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Abstract: A strain energy density function is used to characterize the hyperelasticity of rubber-like materials. Conventional

models, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are widely used in automotive industries, in which

the strain potential is derived from strain invariants or principal stretch ratios. A fitting procedure for experimental data is

required to determine material constants for each model. However, due to the complexities of the mathematical expression,

these models can only produce an accurate curve fitting in a specified strain range of the material. In this study, a hyper-

elastic model for Neodymium Butadiene rubber is developed by using the Artificial Neural Network. Comparing the ana-

lytical results to those obtained by conventional models revealed that the proposed model shows better agreement for both

uniaxial and equibiaxial test data of the rubber.
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Introduction

Rubber-like and elastomeric materials are widely utilized

for engineering applications such as rubber tires, engine

mountings, seals, and shock absorbers and etc. The dominant

property of these materials is their ability to elongate large

deformation.1

A number of hyperelastic models are investigated to char-

acterize the highly non-linear behavior of rubbers. Many

attempts have been conducted to compare the results

obtained from the constitutive models and experiments for

the target materials.2,3

It shows that the conventional models have limits to match

the data efficiently, i.e., they have difficulties capturing

multi-axial deformation states of the hyperelastic materials.

Artificial neural network (ANN) with a capacity of capturing

complex relationships between inputs and outputs has been

used in many studies to construct mathematical models

between physical quantities. Using a neural network to model

strain energy density function in terms of strain invariants,

Shen et al. and Liang et al. developed hyperelastic models

for incompressible rubber and elastomeric foams, respec-

tively.4,5 Linka et al. introduced a general approach to con-

stitutive artificial neural networks, which incorporates

knowledge of rubber mechanics and experimental data to

build a constitutive hyperelastic model.6

Three aforementioned works also found a successful and

efficient implementation of the models in commercial finite

element software. 

The target material of this study is Neodymium Butadiene

rubber (NdBR), provided by Daeheung Rubber and Tech-

nology. Its typical application includes tires (tread and side-

wall), retreads, conveyor belts, and anti-vibration bushings.

This study represents a more efficient model for hyperelastic

materials, which helps engineers to obtain better design and

analysis of mechanical parts made of NdBR.

†Corresponding author E-mail: mechkbk@inje.ac.kr
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Experimental

1. Continuum mechanics of rubber

In the following, the mechanics of rubber material are

briefly revised. The local gradient of deformation is denoted

. The right Cauchy-Green deformation tensor is then

related to  by:

(1)

The strain invariants, denoted I1, I2, I3, are given by:

(2)

Hyperelastic materials normally experience large deforma-

tion in many applications. Due to large strain problems, two

major stress tensors are considered and defined, the true

stress tensor s and the first Piola-Kirchoff (also called the

nominal) stress tensor . These physical quantities are

related by:

(3)

In this study, our investigated material is assumed to be

homogeneous, isotropic, rate-independent, and incompress-

ible. Therefore, the kinematic condition must be satisfied,

which is represented by: . The first Piola-

Kirchoff stress tensor can be rewritten:

(4)

where  is the Lagrange multiplier associated with the

incompressibility constraint. 

For further details, readers are encouraged to refer for

example to.7

2. Conventional Hyperelastic models

In this section, we shortly discuss the formulations of

widely used hyperelastic models for rubber-like materials. 

Neo-Hookean model is one of the simple models for

incompressible materials where the strain density function is

a linear function of only the first strain invariant as follows:

(5)

A Mooney-Rivlin model is introduced by Melvin Mooney

and Ronald Rivlin, where the strain energy density function

is a linear combination of two strain invariants:8

(6)

An Ogden model is a different approach to those two

above models.9

 This model expresses the strain energy density function

in terms of principal stretch ratios. For example, the third-

order Ogden model has that function defined by:

(7)

3. Neural network-based modeling of rubber

In this study, the neural network-based hyperelastic model

is investigated to reproduce theoretically the stress-strain

curves obtained from uniaxial and equibiaxial tension of

industrial rubber used in automotive engine bush. The input
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Figure 1. Structure of the neural network (red arrow denotes trainable weights between two dense layers).
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of this model is deformation gradient  (in the shape of

3×3), and the output is nominal stress tensor  (also in the

shape of 3×3). The structure of the model is demonstrated

in Figure 1. 

Conventional models for incompressible rubber-like mate-

rials such as Ogden, Neo-Hookean, Mooney-Rivlin, define

strain energy density (denoted U) explicitly as an expression

of stretch ratios or strain invariants. In the proposed method

of this study, this relationship is undecided and left open to

learning from data using an internal ANN with one hidden

layer and a Scaled Exponential Linear Unit (SELU) activa-

tion function.10

 This internal ANN accepts two strain invariants as input

and results in a scalar value of strain density potential, as

shown in Figure 1.

The hyperparameters in the model include the number of

hidden units, learning rate, the initialization methods, the

number of epochs, and batch size. 

4. Material testing method

Two testing modes are conducted to obtain stress and strain

data, as demonstrated in Figure 2 with a fixed coordinate sys-

tem. These experimental data are then processed into the

inputs and outputs of the model. The details are discussed in

the next section. It is important to note that the rubber spec-

imen should be stabilized by stretching several times to reach

two or three maximum strain levels beforehand.11

4.1. Uniaxial tension test

This test creates a deformation state where there is no lat-

eral constraint to thinning dimension. Normally, the length of

the specimen has to be at least 10 times higher than the width

and thickness. The deformation gradient  and the engi-

neering stress tensor  is expressed below:

 , (8)

where l is the primary stretch ratio, P is the load, and A0 is

the initial cross-section area of the specimen. 

4.2. Equibiaxial extension test

A state of equal strain in two directions is created in this

test. The equal biaxial strain state may be achieved by radi-

ally stretching a circular disc. The deformation gradient 

and the engineering stress tensor  at the center of the disc

are defined by: 

(9)

A0 is the original area normal to the width and the height

of the specimen. A straight line of initial length L0 is marked

in the specimen and then measured the deformed length, L,

using a laser extensometer. The primary stretch ratio, l, is cal-

culated by: . The equibiaxial stress, s, is defined by:

, where P is the sum of the forces normal to the width

and the height.

5. Training progress and implementation into ABAQUS

The model is implemented in the Python-based machine

learning library Keras-Tensorflow, using symbol-to-symbol

automatic differentiation in the library.12

The raw data from experiments are processed to get the

stable stress-strain curves in uniaxial and biaxial modes.

Thus, the test set of deformation gradient inputs and engi-

neering stress tensor outputs is obtained. Afterward, they are

applied to the training process. The number of hidden units

in the hidden layer is varied to have reasonable curve fitting
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Figure 2. Illustration of testing methods.

Table 1. Hyperparameters of the Neural Network

Parameters Value/Specification

Learning rate 0.005

Optimization method Adams (default 1, 2, ε)

Initialization method Glorot Uniform

Epochs 3500-4000

Batch size 8

Loss Mean absolute percentage error

Hidden units 7 (6-8)
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compared to experiments, depending on the complexity of

the multi-axial stress-strain relationship of the material. In

this rubber material, we found that 6-8 units in the hidden

layers result in a satisfactory fitting. The training algorithm

is Adam with default parameters. The hyperparameters of the

model are shown in Table 1.

In this work, we compared the neural network-based model

with three widely used conventional hyperelastic models:

Ogden 3rd, Neo-Hookean, Mooney-Rivlin. The material con-

stants for these models are obtained from ABAQUS. 

Results and Discussion

The stress level from both the constitutive model by neural

network and conventional models are extracted for compar-

ison. 

1. Equibiaxial test results

Figure 3 shows the results of hyperelastic models for the

uniaxial tension test. As shown in Figure 3, the neural net-

work model has better agreement with experiments than the

Figure 3. Equibiaxial extension test results.

Figure 4. Uniaxial tension test results.
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conventional models do. Ogden 3rd model fits accurately up

to a strain level of about 20%. In addition, Mooney-Rivlin

and Neo-Hookean models match the data in a strain range

of 30%-60%.

2. Uniaxial test results

The results for the uniaxial test are shown in Figure 4. The

neural network model fits the experiments efficiently. For a

low strain range below 40%, conventional models are not

enough to represent the non-linearity of the material. Ogden

3rd model and Mooney-Rivlin model match the data in a

moderate strain range of 45%-65%. 

3. Implementation in ABAQUS

To verify the implementation of the proposed hyperelastic

model using a neural network in a commercial FEA software,

the UHYPER subroutine of ABAQUS was coded based on

the fully trained model. The analysis of the biaxial extension

test is reproduced, and Figure 5 shows the strain distribution. 

Conclusions

In this study, a hyperelastic model for rubber material

using a neural network was developed and implemented suc-

cessfully into FEA software. A combination of test data from

uniaxial and equibiaxial experiments was used to train the

model. A good agreement between experiments and the pro-

posed model is achieved. In comparison with widely used

conventional models, the neural network-based shows more

efficient curve fitting results. Effects due to more training

data from different test modes such as torsion, pure shear or

simple shear and the structure of the neural network should

be investigated for future study.
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