• 제목/요약/키워드: hydrothermal reaction

검색결과 403건 처리시간 0.026초

수열반응 조건에 의한 YAG 분말의 특성과 형상제어 (Properties and Shape Control of YAG Powder Prepared by Hydrothermal Reaction)

  • 지성훈;김상문;구자인;김태옥
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.739-744
    • /
    • 2000
  • YAG(Y3Al5O12) as host material of YAG:Tb3+ was studied via hydrothermal synthesis of metal hydroxides. We changed the kind of mineralizer, the concentrations and process conditions in hydrothermal synthesis. As a result, we found, acicular YAG powders were obtained by the use of KOH as a mineralizer, the concentration of KOH affected the shape and size of YAG powder. Fine grained YAG were perpared by the use of NH4OH as a mineralizer and the concentration of NH4OH affected crystal phases but did not affect particle size. We could finally get the spherical looking YAG powder at 8 M NH4OH and at 35$0^{\circ}C$ for 12h. The average particle size was about 0.2${\mu}{\textrm}{m}$.

  • PDF

벤토나이트 완충재의 열수거동 및 장기건전성 연구 (Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material)

  • 이재완;조원진
    • 방사성폐기물학회지
    • /
    • 제5권2호
    • /
    • pp.145-154
    • /
    • 2007
  • 벤토나이트 완충재의 열수거동 실험에서는 고준위폐기물처분장 완충재로 유력하게 고려되고 있는 국산 벤토나이트를 대상으로 열수특성을 규명하고, 또 그 결과를 바탕으로 KRS 처분환경에서 벤토나이트 완충재의 장기건전성을 평가하였다. 실험결과, 벤토나이트 완충재의 열수반응은 주 구성광물인 스멕타이트의 일라이트화를 통해 진행되었으며, 온도, $K^+$농도, pH는 이러한 일라이트화에 중요한 열수반응인자 역할을 하였다. KRS 처분환경에 대한 국산벤토나이트 완충재의 장기건전성을 분석한 결과, 정상상태에서는 벤토나이트 완충재가 오랜 기간 동안 방벽재기능을 유지하였지만, 보수적인 조건에서는 약 $5{\times}10^4$년이 경과했을 때 벤토나이트 완충재를 구성하는 스멕타이트의 50%이상이 일라이트로 전환되어 방벽재로서의 팽윤능력을 상실할 수 있음을 예상할 수 있었다.

  • PDF

열수액화를 이용한 미세조류 추출잔사로부터 바이오원유 제조에 대한 반응인자의 영향 (Influence of Reaction Parameters on Biocrude Production from Lipid-extracted Microalgae using Hydrothermal Liquefaction)

  • 류영진;신희용;양지현;이윤우;정인재;박한울;이철균
    • 한국해양바이오학회지
    • /
    • 제9권2호
    • /
    • pp.35-42
    • /
    • 2017
  • Hydrothermal liquefaction of lipid-extracted Tetraselmis sp. feedstock containing 80 wt.% water was conducted in a batch reactor at different temperatures (300, 325, and $350^{\circ}C$) and reaction times (5, 10, 20, 40, and 60 min). The biocrude yield, elemental composition and higher heating value obtained at various reaction conditions were used to predict the optimum conditions for maximizing energy recovery of biocrude with good quality. A maximum energy recovery of 67.6% was obtained at $325^{\circ}C$ and 40 min with a high energy density of 31.8 MJ/kg and lower contents of nitrogen and oxygen. Results showed that reaction conditions of $325^{\circ}C$, 40 min was most suitable for maximizing energy recovery while at the same time achieving improved quality of biocrude.

규석 분말도에 따른 ALC의 물리적 특성 변화 (Physical Properties of ALC with Various Fineness of Quartzite)

  • 추용식;정의종;송훈;이종규;김영곤;강대구
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.407-411
    • /
    • 2010
  • ALC was fabricated using cement, lime and quartzite by hydrothermal reaction. ALC has low strength and brittleness on account of inner pores. The studies for resolving these problems were driven by many researchers. Among these researches, the controls of quartzite fineness have been studied for unsuitable properties of ALC. This study experimented with variation of 90 ${\mu}m$ residue for obtain good physical properties. It was found that 90 ${\mu}m$ residue influenced on physical properties of ALC. The lower amount of 90 ${\mu}m$ residue, the higher compressive and bending strength. But the continuing decrease of 90 ${\mu}m$ residue did not cause the increase of strength. In order to application of these results in process, the states of process and hydrothermal products will be considered.

이트리아 안정화 지르코니아 나노 분말 합성 (Hydrothermal Synthesis of 6mol% Yttria Stabilized Cubic ZrO2 Nano Powders)

  • 이재훈;배성환
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.445-450
    • /
    • 2017
  • YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature ($100^{\circ}C$), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.

수열합성에 의한 $Pb(Mn_{1/3} Sb_{2/3})_{0.08} Ti_{0.495}Zr_{0.425}O_3$ 계의 분말제조 및 4K_P$ 특성 (Formation of Powders and Electromechanical Coupling Factor of $Pb(Mn_{1/3} Sb_{2/3})_{0.08} Ti_{0.495}Zr_{0.425}O_3$ by Hydrothermal Synthesis)

  • 이명교;홍창희
    • 한국세라믹학회지
    • /
    • 제23권3호
    • /
    • pp.15-20
    • /
    • 1986
  • Formation of powders and electromechanical coupling factor of $Pb(Mn_{1/3} Sb_{2/3})_{0.08} Ti_{0.495}Zr_{0.425}O_3$ by hydro-thermal synthesis are described. The hydrothermal reactions each were accomplished at 12$0^{\circ}C$~25$0^{\circ}C$ for 5hours and sintering was accomplished at 1, .20$0^{\circ}C$ for 1hours. The PZT powders by hydrothermal synthesis were formed above 16$0^{\circ}C$ and the forms were cubic types. The ratio of grain size of sintered sample to powder was slowly decreased with the rising of hydrothermal reactino temperature but decreased rapidly above 22$0^{\circ}C$ Sintering density was decreased with the rising of hydrothermal reaction temperature above 16$0^{\circ}C$ but dielectric constant was increased. Electromechanical coupling factor $K_P$ was almost constant at 16$0^{\circ}C$~24$0^{\circ}C$ range and the value of $K_P$ was about 0.43-0.45.

  • PDF

수열합성한 TiO2 분말을 이용한 염료감응형 태양전지의 전기화학적 특성 (Electrochemical Properties of Dye-sensitized Solar Cells Using the TiO2 Prepared by Hydrothermal Reaction)

  • 나병희;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2014
  • In this work, according to temperature and time of hydrothermal synthesis, the electrochemical properties of $TiO_2$ particle using TTIP based on changing temperature and time in the hydrothermal synthesis were analyzed and optimized temperature and time were derived. When hydrothermal synthesis temperature and time were $200^{\circ}C$ and 1 h, respectively. The fabricated DSSC delivered the best electrochemical properties. In that case, $TiO_2$ particle size was 13.08 nm, electron transport time was $2.34{\times}10^{-3}s$ and recombination time was $4.01{\times}10^{-2}s$. The lowest impedance of $13.52{\Omega}$ and Voc, Jsc, FF is 0.70 V, $1.50mAcm^{-2}$, 65.62%, respectively and corresponding efficiency of 5.34% was considered as the optimal.

최적 수열합성 조건을 이용한 PSZT 분말 제조 (Preparation of PSZT powders using the optimum hydrothermal synthesis)

  • 이기정;정성택;서경원
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.292-300
    • /
    • 1997
  • 150~$190^{\circ}C$에서 2시간 동안의 수열반응을 통해 입방체 모양을 갖는 0.5~5 $\mu\textrm{m}$의 ($Pb_{0.95}Sr_{0.05})(Zr_{0.52}Ti_{0.48})O_3$ 결정분말을 제조하였다. 실험결과 반응온도가 증가함에 따라 PSZT의 핵생성과 결정성장 속도가 빨라져서 평균입경이 커짐을 알 수 있었다. 광화제로 사용한 KOH의 농도를 증가시켜 평균입경이 작고 입도분포의 폭이 좁은 분말을 얻을 수 있었으며 결정화가 일어나는 반응온도를 낮출 수 있었다. Zr/Ti의 조성비가 0.40/0.60에서 0.60/0.40으로 증가함에 따라 PSZT의 주요 결정상은 정방정의 결정상에서 능면정의 결정상으로 전이되었다.

  • PDF

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구 (Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries)

  • 강명보;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.