Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.8.445

Hydrothermal Synthesis of 6mol% Yttria Stabilized Cubic ZrO2 Nano Powders  

Lee, Jae-Hoon (Department of Mechatronics Engineering, Kyungnam University)
Bae, Sung-Hwan (Department of Nano Science and Engineering, Kyungnam University)
Publication Information
Korean Journal of Materials Research / v.27, no.8, 2017 , pp. 445-450 More about this Journal
Abstract
YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature ($100^{\circ}C$), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.
Keywords
hydrothermal synthesis; yttria stabilized $ZrO_2$; solubility curve;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. K. Kang, D. S. So, B. K. Choi, R. H. Song, J. Korean Ind. Eng. Chem., 6, 52 (2003).
2 N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, p. 209-210, Elsevier, Netherlands (1995).
3 N. Q. Minh, Solid State Ionics., 174, 271 (2004).   DOI
4 Y. Ji, J. A. Kilner and M. F. Carolan, Solid State Ionics., 176, 937 (2005).   DOI
5 E. C. Subbarao, Solid State Ionics., 11, 317 (1984).   DOI
6 W. Pyda, K. Haberko and M. M. Buko, J. Am. Ceram. Soc., 74, 2622 (1991).   DOI
7 H. Nishizawa, N. Yamasaki, K. Matsuoka and H. Mitsushio, J. Am. Ceram. Soc., 65, 343 (1982).   DOI
8 O. I. V and A. V Ragulya, J. Am. Ceram. Soc., 40, 1360 (2004).
9 E. Tani, M. Yoshimura and S. Smiya, J. Am. Ceram. Soc., 66, 11 (1983).   DOI
10 H. Kumazawa, T. Inoue, and E. Sada, Chem. Eng. J. Biochem. Eng. J., 55, 93 (1994).   DOI
11 V. V. Silva, F. S. Lameiras and R. Z. Domingues, Ceram. Int., 27, 615 (2001).   DOI
12 A. Feinberg and C. H. Perry, J. Phys. Chem. Solids, 42, 513 (1981).   DOI
13 K. Matsui, H. Suzuki and M. Ohagai, J. Am. Ceram. Soc., 78, 146 (1995).   DOI
14 J. H. Ryu, H. S. Kil, J. H. Song, D. Y, Lim and S. B. Cho, Powder Technol., 221, 228 (2012).   DOI
15 M. Yoshimura and S. S miya, Mater. Chem. Phys., 61, 1 (1999).   DOI
16 H. J. Noh, J. K. Lee, D. S. Seo, K. H. Hwang, J. Korean. Ceram. Soc., 39, 308 (2002).   DOI
17 L. Helm and A. E. Merbach, Chem. Rev., 105, 1923 (2005).   DOI
18 G. T. Mamott, P. Barnes, S. E. Tarling, S. L. Jones and C. J. Norman, J. Mater. Sci., 26, 4054 (1991).   DOI
19 J. H. Adair, H. G. Krarup, S. Venigalla and T. Tsukada, Mater. Res. Soc. Symp. Proc., 432, 101 (1997).
20 R. A. Kimel and J. H. Adair, J. Am. Ceram. Soc., 88, 1133 (2005).   DOI
21 T. Tsukada, S. Venigalla, A. A. Morrone and J. H. Adair, J. Am. Ceram. Soc., 82, 1169 (1999).
22 W. S. Kim, J. Korean Ind. Eng. Chem., 10, 9 (2007).
23 C. G. Kontoyannis and M. Orkoula, J. Mater. Sci., 29, 5316 (1994).   DOI
24 Christopher J. Szepesi and H. Adair, J. Am. Ceram. Soc., 94, 4239 (2011).   DOI