Browse > Article
http://dx.doi.org/10.15433/ksmb.2017.9.2.035

Influence of Reaction Parameters on Biocrude Production from Lipid-extracted Microalgae using Hydrothermal Liquefaction  

Ryu, Young-Jin (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Shin, Hee-Yong (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Yang, Ji-Hyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Lee, Yunwoo (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Jeong, Injae (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Park, Hanwool (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.9, no.2, 2017 , pp. 35-42 More about this Journal
Abstract
Hydrothermal liquefaction of lipid-extracted Tetraselmis sp. feedstock containing 80 wt.% water was conducted in a batch reactor at different temperatures (300, 325, and $350^{\circ}C$) and reaction times (5, 10, 20, 40, and 60 min). The biocrude yield, elemental composition and higher heating value obtained at various reaction conditions were used to predict the optimum conditions for maximizing energy recovery of biocrude with good quality. A maximum energy recovery of 67.6% was obtained at $325^{\circ}C$ and 40 min with a high energy density of 31.8 MJ/kg and lower contents of nitrogen and oxygen. Results showed that reaction conditions of $325^{\circ}C$, 40 min was most suitable for maximizing energy recovery while at the same time achieving improved quality of biocrude.
Keywords
Hydrothermal liquefacition; Lipid-extracted microalgae; Tetraselmis sp.; Biocrude;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vardon, D.R., Sharma, B.K., Blazina, G. V, Rajagopalan, K., Strathmann, T.J., 2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109, 178-187.   DOI
2 Ward, A.J., Lewis, D.M., Green, F.B., 2014. Anaerobic digestion of algae biomass : A review. Algal Res. 5, 204-214.   DOI
3 Yu, G., Zhang, Y., Schideman, L., Funk, T., Wang, Z., 2011. Environmental Science Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci. 4, 4587-4595.   DOI
4 Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W., Lee, E.Y., 2013. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132, 197-201.   DOI
5 Maisashvili, A., Bryant, H., Richardson, J., Anderson, D., Wickersham, T., Drewery, M., 2015. The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res. 9, 133-142.   DOI
6 Mariotti, F., Tome, D., Mirand, P.P., 2008. Converting Nitrogen into Protein - Beyond 6.25 and Jones Factors. Crit. Rev. Food Sci. Nutr. 48, 177-184.   DOI
7 Miao, X., Wu, Q., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846.   DOI
8 Miao, X., Wu, Q., Yang, C., 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 71, 855-863.   DOI
9 Miller, G., Spoolman, S., 2007. Environmental science: problems, connections and solutions., 12th ed. Jack Carey, Belmont, CA.
10 Patel, 2014. Environmental and economical effects of fossil fuels. J. Recent Res. Eng. Technol. 1.
11 Pirt, S.J., 1986. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol. 102, 3-37.   DOI
12 Safi, C., Charton, M., Pignolet, O., 2013. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 25, 523-529.   DOI
13 Channiwala, S.A., Parikh, P.P., 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051-1063.   DOI
14 Schenk, P.M., Thomas-hall, S.R., 2008. Second Generation Biofuels : High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 1, 20-43.   DOI
15 Biller, P., Ross, A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215-225.   DOI
16 Biller, P., Ross, A.B., Skill, S.C., Lea-langton, A., Balasun daram, B., Hall, C., Riley, R., Llewellyn, C.A., 2012. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 1, 70-76.   DOI
17 Dale, S., 2017. BP Statistical Review of World Energy June 2017. London.
18 Demirbas, A., Demirbas, M.F., 20110. Algae energy: Algae as a New Soure of Biodiesel. Springer Science & Business Media.
19 Deng, X., Li, Y., Fei, X., 2009. Microalgae : A promising feedstock for biodiesel. African J. Microbiol. Res. 3, 1008-1014.
20 Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G. M., Posewitz, M.C., 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240.   DOI
21 Eboibi, B.E., Lewis, D.M., Ashman, P.J., Chinnasamy, S., 2014. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour. Technol. 170, 20-29.   DOI
22 Ehimen, E.A., Sun, Z.F., Carrington, C.G., 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel 89, 677-684.   DOI
23 Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S., 2013. Microal gae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renew. Energy 60, 625-632.   DOI
24 Folch, J., Lees, M., Stanley, G.H.S., 1956. A simple method for the isolation and purification of total lipides from animal tissues.
25 Georgianna, D.R., Stephen, P., 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335.   DOI
26 Gouveia, L., 2011. Microalgae as a Feedstock for Biofuels. Springer, Berlin, Heidelberg.
27 Harun, R., Danquah, M.K., Forde, G.M., 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85, 199-203.
28 Hidalgo, P., Toro, C., Ciudad, G., Navia, R., 2013. Advances in direct transesterification of microalgal biomass for biodiesel production. Rev. Environ. Sci. Bio/Technology 12, 179-199.   DOI
29 Jena, U., Das, K.C., Kastner, J.R., 2011. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol. 102, 6221-6229.   DOI
30 John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A., 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186-193.   DOI
31 Kumar, G., Shobana, S., Chen, W.-H., Bach, Q.-V., Kim, S.-H., Atabani, A.E., Chang, J.-S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. 19, 44-67.   DOI
32 Toor, S.S., Rosendahl, L., Rudolfb, A., 2011. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36, 2328-2342.   DOI
33 Shin, D., Bae, J., Cho, Y., Ryu, Y., Kim, Z., Lim, S., Lee, C., 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44.   DOI
34 Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chuna, L., Tong, J., 2010. Production and characterization of biooil from hydrothermal liquefaction of microalgae Dunalie lla tertiolecta cake. Energy 35, 5406-5411.   DOI
35 Tian, C., Li, B., Liu, Z., Zhang, Y., Lu, H., 2014. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sustain. Energy Rev. 38, 933-950.   DOI
36 Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., Savage, P.E., 2012. Hydrothermal liquefaction of Nannochloro psis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy 46, 317-331.   DOI
37 Vardon, D.R., Sharma, B.K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., Strathmann, T.J., 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102, 8295-8303.   DOI