Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.217

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction  

Patil, Komal (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Babar, Pravin (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Kim, Jin Hyeok (Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 217-222 More about this Journal
Abstract
The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.
Keywords
electrocatalyst; nickel-cobalt sulfide; nanowires; hydrothermal; oxygen evolution reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Cheng, Z. Su, P. Y. Kuang, G. F. Chen and Z. Q. Liu, J. Mater. Chem. A, 3, 19314 (2015).   DOI
2 P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, Small, 14, 1702568 (2018).   DOI
3 L. M. Cao, J. W. Wang, D. C. Zhong and T. B. Lu, J. Mater. Chem. A, 6, 3224 (2018).   DOI
4 H. Wang, H. W. Lee, Y. Deng, Z. Lu, P. C. Hsu, Y. Liu, D. Lin and Y. Cui, Nat. Commun., 6, 7261 (2015).   DOI
5 X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, ACS Catal., 6, 580 (2016).   DOI
6 H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, Energy Environ. Sci., 11, 2858 (2018).   DOI
7 P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, J. Colloid Interface Sci., 537, 43 (2019).   DOI
8 M. Carmo, D. L. Fritz, J. Merge and D. Stolten, Int. J. Hydrogen Energy, 38, 4901 (2013).   DOI
9 Y. Sun, M. Delucchi and J. Ogden, Int. J. Hydrogen Energy, 36, 11116 (2011).   DOI
10 M. R. Gao, Y. F. Xu, J. Jiang and S. H. Yu, Chem. Soc. Rev., 42, 2986 (2013).   DOI
11 H. Q. Zhou, F. Yu, Y. F. Huang, J. Y. Sun, Z. Zhu, R. J. Nielsen, R. He, J. M. Bao, W. A. Goddard III, S. Chen and Z. F. Ren, Nat. Commun., 7, 12765 (2016).   DOI
12 M. W. Kanan and D. G. Nocera, Science, 321, 1072 (2011).   DOI
13 P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, ACS Sustainable Chem. Eng., 7, 10035 (2019).   DOI
14 F. Yang, Y. Chen, G. Cheng, S. Chen and W. Luo, ACS Catal., 7, 3824 (2017).   DOI
15 A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 26, 4661 (2016).   DOI
16 J. Nai, Y. Lu, L. Yu, x. Wand and X. W. Lou, Adv. Mater., 29, 1703870 (2017).   DOI
17 M. Cheng, H. Fan, Y. Song, Y. Cui and R. Wang, Dalton Trans., 46, 9201 (2017).   DOI
18 C. Jing, X. Liu, X. Liu. D. Jiang, B. Dong, F. Dong, J. Wang, N. Li, T. Lan and Y. Zhang, CrystEngComm, 20, 7428 (2018).   DOI
19 X. Du, W. Lian and X. Zhang, Int. J. Hydrogen Energy, 43, 20627 (2018).   DOI
20 X. Yin, G. Sun, L. Wang, L. Bai, L. Su, Y. Wang, Q. Du and G. Shao, Int. J. Hydrogen Energy, 42, 25267 (2017).   DOI