• Title/Summary/Keyword: hydrogen annealing

Search Result 195, Processing Time 0.03 seconds

Influence of Hydrogen on Al-doped ZnO Thin Films in the Process of Deposition and Annealing

  • Chen, Hao;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.93-96
    • /
    • 2009
  • The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.

Post-annealing of Al-doped ZnO films in hydrogen atmosphere (Al이 도핑된 투명전극용 ZnO 박막의 수소 열처리에 관한 특성연구)

  • Oh, Byeong-Yun;Jeong, Min-Chang;Lee, Woong;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.58-61
    • /
    • 2005
  • In an effort to improve the electrical properties of ZnO:Al transparent electrode films, post-annealing treatment in hydrogen atmosphere was attempted with varying annealing time at 573 K for compatibility with typical display device fabrication processes. It was observed that carrier concentrations and mobilities increased with longer annealing time with small changes in crystallinity. This resulted in substantial decrease in resistivity from $4.80{\times}10^{-3}$ to $8.30{\times}10^{-4}{\Omega}cm$ due to increased carrier concentration. Such improvements in electrical properties are attributed to the passivation of the grain boundary surfaces. The optical properties of the films, which changed in accordance with the Burstein-Moss effect, were consistent with the observed changes in electrical properties.

  • PDF

Enhancement of Electrical Properties on ZnO: Al Thin Film due to Hydrogen Annealing and SiO2 Coating in Damp-heat Environment

  • Chen, Hao;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.58-61
    • /
    • 2009
  • The electrical stability of ZnO: Al thin films deposited on glass substrate by the RF magnetron sputtering method have been modified by a hydrogen annealing treatment and $SiO_2$ protection layer. AZO thin films were deposited at room temperature and different RF powers of 50, 100, 150, and 200 W to optimize the AZO film growth condition. The lowest value of resistivity of $9.44{\times}10^{-4}{\Omega}cm$ was obtained at 2 mtorr, room temperature, and a power level of 150 W. Then, the AZO thin films were annealed at $250-400^{\circ}C$ for 1 h in hydrogen ambient. The minimum resistivity obtained was $8.32{\times}10^{-4}{\Omega}cm$ as-annealed at $300^{\circ}C$. The electrical properties were enhanced by the hydrogen annealing treatment. After a 72 h damp-heat treatment in harsh conditions of a water steam at $110^{\circ}C$ for four representative samples, a degradation of electrical properties was observed. The sample of hydrogen-annealed AZO thin films with $SiO_2$ protection layer showed a slight degradation ratio(17%) of electrical properties and a preferable transmittance of 90%. The electrical stability of AZO thin films had been modified by hydrogen annealing treatment and $SiO_2$ protection layer.

Effect of Annealing on a-Si:H Thin Films Fabricated by RF Magnetron Sputtering (RF 스퍼터를 이용하여 제작된 a-Si:H 박막의 어닐링 효과에 관한 연구)

  • Kim, Do-Yun;Kim, In-Soo;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The effect of annealing under argon atmosphere on hydrogenated amorphous silicon (a-Si:H) thin films deposited at room temperature and $300^{\circ}C$ using Radio Frequency (RF) magnetron sputtering has been investigated. For the films deposited at room temperature, there was not any increase in hydrogen content and optical band gap of the films, and as a result, quality of the films was not improved under any annealing conditions. For the films deposited at $300^{\circ}C$, on the other hand, significant increases in hydrogen content and optical band gap were observed, whereas values of microstructure parameter and dark conductivity were decreased upon annealing below $300^{\circ}C$. In this study, it was proposed that the Si-HX bonding strength is closely related to deposition temperature. Also, the improvement in optical, electrical and structural properties of the films deposited at $300^{\circ}C$ was originated from thermally activated hydrogen bubbles, which were initially trapped at microvoids in the films.

Effect of Post Deposition Annealing Temperature on the Hydrogen Gas Sensitivity of SnO2 Thin Films (증착 후 열처리온도에 따른 SnO2 박막의 수소 검출 민감도 변화)

  • You, Y.Z.;Kim, S.K.;Lee, Y.J.;Heo, S.B.;Lee, H.M.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.239-243
    • /
    • 2012
  • $SnO_2$ thin films were prepared on the Si substrate by radio frequency (RF) magnetron sputtering and then post deposition vacuum annealed to investigate the effect of annealing temperature on the structural properties and hydrogen gas sensitivity of the films. The films that annealed at $300^{\circ}C$ show the higher sensitivity than the other films annealed at $150^{\circ}C$. From atomic force microscope observation, it is supposed that post deposition annealing promotes the rough surface and also, increase gas sensitivity of $SnO_2$ films for hydrogen gas. These results suggest that the vacuum annealed $SnO_2$ thin films at optimized temperatures are promising for practical high-performance hydrogen gas sensors.

A Study on Effect of Atmospheric Gas on the Surface Cleanliness in the Batch Annealing Furnace (BAF풀림시 분위기가스가 표면 청정도에 미치는 영향에 관한 연구)

  • Yoon, Soon Hyun;Kim, Moon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-167
    • /
    • 1996
  • The effect of atmospheric gas on the surface cleanliness in the batch annealing furnace(BAF) is presented. It is very important to improve the surface cleanliness to investigate the surface defects such as carbon contamination, smudge and yellow color phenomenon on the surface of steel sheet. In order to study the occurrence of surface defects of steel sheet, the annealing operations were carried out in the H2 BAF with 75% hydrogen and conventional BAF with 4% hydrogen. The hydrogen is important factor that affect the energy saving in the entire annealing cycle and the surface cleanliness. In the conventional BAF, it shows that to protect the yellow color phenomenon the proper finish temperature is $80^{\circ}C$ and in the smudge sample the oxidized thickness has the depth of $120{\AA}$.

  • PDF

Analysis of Electrical Property of Room Temperature-grown ZnO:Al Thin films Annealed in Hydrogen Ambient (수소 분위기에서 후열처리한 상온증착 ZnO:Al 박막의 전기적 특성 분석)

  • Jeong, Yun-Hwan;Chen, Hao;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.318-322
    • /
    • 2009
  • In this paper, to establish growth technology of ZnO:Al thin films at low temperature applied to photoelectronic devices, ZnO:Al were prepared by RF magnetron sputtering on glass substrate at room temperature using different RF power with subsequent annealing process at different temperature in $H_2$ ambient. The resistivity of hydrogen-annealed ZnO:Al thin film at temperature of $300^{\circ}C$ was reduced to $8.32{\times}10^{-4}{\Omega}cm$ from $9.44{\times}10^{-4}{\Omega}cm$ which was optimal value for as-grown films. X-ray photoelectron spectroscopy(XPS) revealed that improved electrical properties are ascribed to desorption of the negatively charged oxygen species from the grain boundary surfaces by the hydrogen annealing process.

Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo;Choi, Han-Woo;Kim, Joon-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

Highly Reliable Trench Gate MOSFET using Hydrogen Annealing (수소 열처리를 이용한 고신뢰성 트렌치 게이트 MOSFET)

  • 김상기;노태문;박일용;이대우;양일석;구진근;김종대
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • A new technique for highly controllable trench corner rounding at the top and bottom of the trench using pull-back and hydrogen annealing has been developed and investigated. The pull-back process could control the trench corner rounding radius at the top comers of the trench. The silicon migration generated by hydrogen annealing at the trench coiners provided (111) and (311) crystal planes and gave a uniform gate-oxide thickness, resulting in high reliable trench DMOSFETs with highly breakdown voltages and low leakage currents. The breakdown voltage of a trench DMOSFET fabricated using hydrogen annealing was increased by 25% compared with a conventional DMOSFET. The reasonable drain current of 45.3 A was obtained when a gate voltage of 10 V was supplied. The on-resistance of the trench gate DMOSFET fabricated using the trench cell of 45,000 was about 55 m(at a gate voltage of 10 V under a drain current of 5 A.

Effects of W-N/Pt Bottom Electrode on the Ferroelectric Degradation of $Sr_{0.8}Bi_{2.4}Ta_2O_9/Pt/Si$ Structure due to the Hydrogen Annealing ($Sr_{0.8}Bi_{2.4}Ta_2O_9/Pt/Si$ 구조의 수소열처리에 의한 강유전특성 열화에 미치는 W-N/Pt 전극효과)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.87-91
    • /
    • 2004
  • We have investigated the effects of W-N/Pt bottom electrode on the ferroelectric degradation of $Sr_{0.8}Bi_{2.4}Ta_2O_9(SBT)/Pt$ due to hydrogen annealing at $350^{\circ}C$ in $N_2$ gas atmosphere containing $5{\%}\;H_2$ gas for 1hr. As a result, inserting the W-N thin films between SBT and Pt, this W-N thin film prevents hydrogen molecules to be chemisorbed at the Pt electrode surface of at the electrode/ferroelectric interface during hydrogen annealing. These hydrogen atoms can diffuse into the SBT and react with the oxide causing the oxygen deficiency in the SBT film, which will result in the ferroelectric degradation. Experimental results show that W-N thin film is a good diffusion barrier during the hydrogen annealing.

  • PDF