DOI QR코드

DOI QR Code

Effect of Post Deposition Annealing Temperature on the Hydrogen Gas Sensitivity of SnO2 Thin Films

증착 후 열처리온도에 따른 SnO2 박막의 수소 검출 민감도 변화

  • You, Y.Z. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, S.K. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Y.J. (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, S.B. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, H.M. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 유용주 (울산대학교 첨단소재공학부) ;
  • 김선광 (울산대학교 첨단소재공학부) ;
  • 이영진 (울산대학교 첨단소재공학부) ;
  • 허성보 (울산대학교 첨단소재공학부) ;
  • 이학민 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2012.06.03
  • Accepted : 2012.09.13
  • Published : 2012.09.30

Abstract

$SnO_2$ thin films were prepared on the Si substrate by radio frequency (RF) magnetron sputtering and then post deposition vacuum annealed to investigate the effect of annealing temperature on the structural properties and hydrogen gas sensitivity of the films. The films that annealed at $300^{\circ}C$ show the higher sensitivity than the other films annealed at $150^{\circ}C$. From atomic force microscope observation, it is supposed that post deposition annealing promotes the rough surface and also, increase gas sensitivity of $SnO_2$ films for hydrogen gas. These results suggest that the vacuum annealed $SnO_2$ thin films at optimized temperatures are promising for practical high-performance hydrogen gas sensors.

Keywords

References

  1. A. A. Dakhel : Solar Energy, 86 (2012) 126. https://doi.org/10.1016/j.solener.2011.09.013
  2. S. Wang, Z. Wang, X. Liu and L. Zhang : Sensors and Actuators B: Chemical, 131 (2008) 318. https://doi.org/10.1016/j.snb.2007.11.029
  3. T. Seiyama, A. Kato and N. Nagatani : Anal. Chem, 34 (1962) 1502. https://doi.org/10.1021/ac60191a001
  4. N. Taguchi : Japanese Patent Application No. 45-38200 (1962).
  5. J. Yu and G. M. Choi : Sensors and Actuators B: Chemical, 75 (2001) 56. https://doi.org/10.1016/S0925-4005(00)00742-5
  6. X. Liu, J. Zhang, X. Guo, S. Wu and S. Wang : Sensors and Actuators B: Chemical, 152 (2011) 162. https://doi.org/10.1016/j.snb.2010.12.001
  7. A Salehi : Thin Solid Films, 416 (2002) 260. https://doi.org/10.1016/S0040-6090(02)00626-0
  8. R. Korotkov, R. Gupta, P. Ricou, R. Smith and G. Silverman : Thin Solid Films, 516 (2008) 4720. https://doi.org/10.1016/j.tsf.2007.08.074
  9. S. Park and J. D. Mackenzie : Thin Solid Films, 258 (1995) 268. https://doi.org/10.1016/0040-6090(94)06404-0
  10. S.Heo, H. Lee, C. Jung and D. Kim : J. Kor. Soc. Heat treat, 24 (2011)31.
  11. N. G. Patel, P. D. Patel and V. S. Vaishnav : Sens. Actuators B, 96 (2003) 180. https://doi.org/10.1016/S0925-4005(03)00524-0
  12. H. Lee, S. Heo, Y. Kong and D. Kim : J. Korean Vacuum Soc, 20 (2011) 195. https://doi.org/10.5757/JKVS.2011.20.3.195
  13. B. D. Cullity : Elements of X-ray diffractions, Addition-Wesley, Reading, MA, (1978) 102-121.