Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.2.102

Effect of Annealing on a-Si:H Thin Films Fabricated by RF Magnetron Sputtering  

Kim, Do-Yun (School of New Materials Science and Engineering, Yonsei University)
Kim, In-Soo (School of New Materials Science and Engineering, Yonsei University)
Choi, Se-Young (School of New Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.19, no.2, 2009 , pp. 102-107 More about this Journal
Abstract
The effect of annealing under argon atmosphere on hydrogenated amorphous silicon (a-Si:H) thin films deposited at room temperature and $300^{\circ}C$ using Radio Frequency (RF) magnetron sputtering has been investigated. For the films deposited at room temperature, there was not any increase in hydrogen content and optical band gap of the films, and as a result, quality of the films was not improved under any annealing conditions. For the films deposited at $300^{\circ}C$, on the other hand, significant increases in hydrogen content and optical band gap were observed, whereas values of microstructure parameter and dark conductivity were decreased upon annealing below $300^{\circ}C$. In this study, it was proposed that the Si-HX bonding strength is closely related to deposition temperature. Also, the improvement in optical, electrical and structural properties of the films deposited at $300^{\circ}C$ was originated from thermally activated hydrogen bubbles, which were initially trapped at microvoids in the films.
Keywords
hydrogenated amorphous silicon; hydrogen bubbles; microvoids; annealing; deposition temperature;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. H. Brodsky, M. Cardona and J. J. Cuomo, Phys. Rev. B, 16(8), 3556 (1977)   DOI
2 K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto and A. Nakajima, J. Non-Cryst. Solids, 266(2), 1082 (2000)   DOI   ScienceOn
3 H. Stiebig, E. Moulin and B. Rech, Thin solid films, 515(19), 7522 (2007)   DOI   ScienceOn
4 C. H. Lee, A. Sazonov and A. Nathan, Appl. Phys. Lett., 86, 222106-1 (2005)   DOI   ScienceOn
5 J. Tauc, R. Grigorovici and A. Vancu, Phys. Stat. Sol., 15, 627 (1966)   DOI
6 H. Rinnert, M. Vergnat, G. Marchal and A. Bruneau, J. Appl. Phys., 83(2), 1103 (1998)   DOI   ScienceOn
7 G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens and B. Brooks, Sol. Cells, 2(3), 227 (1980)   DOI   ScienceOn
8 S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur and J. Jang,, J. Electrochem. Soc., 151(3), G167 (2004)   DOI   ScienceOn
9 C. M. Fortmann, Phys. Rev. Lett., 81(17), 3683 (1998)   DOI   ScienceOn
10 K. Tanaka, E. Maruyama, T. Shimada, H. Okamoto and T. Sato, Amorphous Silicon, p.106, John Wiley & Sons, England, (1999)
11 P. Danesh, B. Pantchev, B. Schmidt and D. Grambole, Semicond. Sci. Tech., 19(12), 1422 (2004)   DOI   ScienceOn
12 G. Lucovsky, R. J. Nemanich and J. C. Knights, Phys. Rev. B, 19(4), 2064 (1979)   DOI
13 A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, Phys. Rev. B, 45(23), 13367 (1992)   DOI   ScienceOn
14 A. Deneuville, A. Mini and J. C. Bruyere, Solid State Phys., 14(30), 4531 (1981)   DOI   ScienceOn
15 Y. J. Chabal and C. K. N. Patel, Phys. Rev. Lett., 53(18), 1771 (1984)   DOI
16 W. Futako, T. Kamiya, C. M. Formann and I. Shimizu, J. Non-Cryst. Solids, 266(1), 630 (2000)   DOI   ScienceOn