Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.3.093

Influence of Hydrogen on Al-doped ZnO Thin Films in the Process of Deposition and Annealing  

Chen, Hao (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Jin, Hu-Jie (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Park, Choon-Bae (School of Electrical Electronic and Information Engineering, Wonkwang University, WRISS)
Hoang, Geun-C. (Department. of Semiconductor and Display, Wonkwang University, WRISS)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.3, 2009 , pp. 93-96 More about this Journal
Abstract
The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.
Keywords
AZO; Hydrogen deposition; Hydrogen annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.-Y. Oh, M.-C. Jeong, D.-S. Kim, W. Lee, and J.-M. Myoung, J.Cryst. Growth. 281, 475 (2005)   DOI   ScienceOn
2 S. Y. Myong and K. S. Lim, Appl. Phys. Lett. 82, (2003)
3 M. L. Addonizio, A. Antonaia, G. Cantele, and C. Privato, Thin Solid Films 349, 93 (1999)   DOI   ScienceOn
4 Z. G. Wang, X. T. Zu, X. Zhu, and L. M. Wang, Physica. E, 35, 199 (2006)   DOI   ScienceOn
5 H. J. Jin, Y. H. Jeong, and C. B. Park, Trans. Electr. Electron. Mater. 9, 67 (2008)   DOI   ScienceOn
6 J. F. Chang, W. C. Lin, and M. H. Hon, Appl. Surf. Sci. 183, 18 (2001)   DOI   ScienceOn
7 Joel N. Duenow, Timothy A. Gessert, David M. Wood, David L. Young, and Timothy J. Coutts, J. Non-Cryst. Solids. 354, 2787 (2008)   DOI   ScienceOn
8 D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, and B. K. Meyer, Phys. Rev. Lett. 88, (2002)   DOI   ScienceOn
9 S. H. Lee, T. S. Lee, K. S. Lee, B. Cheong, Y. D. Kim, and W. M. Kim, J. Phys. D, 41, (2008)
10 Chris G. Van de Walle, Phys. Rev. Lett., 85, 5 (2000)   DOI   ScienceOn
11 W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, and F. Qiu, Thin Solid Films 515, 3057 (2007)   DOI   ScienceOn
12 J. S. Yoo, J. H. Lee, S. K. Kim, K. H. Yoon, I. J. Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, and J. S. Yi, Thin Solid Films, 480-481, 213 (2005)   DOI   ScienceOn
13 L.-Y. Chen, W.-H. Chen, J.-J. Wang, and Franklin C.-N. Hong, Phys. Rev. Lett. 85, 5628 (2004)
14 S. Y. Myong, S. I. Park, and K. S. Lim, Thin Solid Films 513, 148 (2006)   DOI   ScienceOn
15 K. Ellmer and R. Wendt, Surf. Coat. Technol. 93, 21 (1997)   DOI   ScienceOn