• 제목/요약/키워드: hydrodynamic effects

Search Result 511, Processing Time 0.029 seconds

DECAY OF TURBULENCE IN FLUIDS WITH POLYTROPIC EQUATIONS OF STATE

  • Lim, Jeonghoon;Cho, Jungyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • We present numerical simulations of decaying hydrodynamic turbulence initially driven by solenoidal (divergence-free) and compressive (curl-free) drivings. Most previous numerical studies for decaying turbulence assume an isothermal equation of state (EOS). Here we use a polytropic EOS, P ∝ ργ, with polytropic exponent γ ranging from 0.7 to 5/3. We mainly aim at determining the effects of γ and driving schemes on the decay law of turbulence energy, E ∝ t. We additionally study probability density function (PDF) of gas density and skewness of the distribution in polytropic turbulence driven by compressive driving. Our findings are as follows. First of all, we find that even if γ does not strongly change the decay law, the driving schemes weakly change the relation; in our all simulations, turbulence decays with α ≈ 1, but compressive driving yields smaller α than solenoidal driving at the same sonic Mach number. Second, we calculate compressive and solenoidal velocity components separately and compare their decay rates in turbulence initially driven by compressive driving. We find that the former decays much faster so that it ends up having a smaller fraction than the latter. Third, the density PDF of compressively driven turbulence with γ > 1 deviates from log-normal distribution: it has a power-law tail at low density as in the case of solenoidally driven turbulence. However, as it decays, the density PDF becomes approximately log-normal. We discuss why decay rates of compressive and solenoidal velocity components are different in compressively driven turbulence and astrophysical implication of our findings.

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Experimental Study on Cellular Instabilities in Diluted Syngas-Air Premixed Flames (희석제가 첨가된 합성가스-공기 예혼합화염에 있어서 셀 불안정성에 관한 실험적 연구)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kim, Jeong-Soo;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.72-83
    • /
    • 2010
  • Experiments were conducted to investigate the effects of added diluents (carbon dioxide, nitrogen, and helium) on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Laminar burning velocities and Markstein lengths were measured by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed.

Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads (유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석)

  • 지용관;이영신
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • The cylindrical Upper Guide Structure assembly of the reactor intervals wish the Core Support Barrel and the Inner Barrel Assembly is subjected to flow induced loads horizontally which include random pressure fluctuation due to turbulent flow and pump pulsation pressures. The purpose of this papers is to perform random vibration and harmonic response analyses fort flow induced loads. The dynamic response characteristics due to random turbulence and pump pulsation loads were evaluated using the lumped mass beam model. Especially the model considered the annulus effects due to water gaps existing between cylindrical structures such as the Upper Guide Structure Barrel, the Core Support Barrel, and the Inner Barrel Assembly. The effect of the Inner Barrel Assembly inside the Upper Guide Structure assembly was studied. The peak dynamic responses lot each loading condition due to the addition of IBA were affected by the natural frequencies of the structures. Therefore the peak dynamic responses of the structures should be conservatively obtained from evaluation of dynamic analysis for various loading conditions.

Development of Bench Tester for Designing the Passive Anti-Rolling Tanks (수동형 감요수조 설계를 위한 벤치테스터 개발)

  • Lew, Jae-Moon;Kim, Hyochul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

Model tests on resistance and seakeeping performance of wave-piercing high-speed vessel with spray rails

  • Seo, Jeonghwa;Choi, Hak-Kyu;Jeong, Uh-Cheul;Lee, Dong Kun;Rhee, Shin Hyung;Jung, Chul-Min;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.442-455
    • /
    • 2016
  • The resistance and seakeeping performance of a high-speed monohull vessel were investigated through a series of model tests in a towing tank. The hull had a slender wave-piercing bow, round bilge, and small deadrise angle on stern. Tests on the bare hull in calm water were first conducted and tests on spray rails followed. The spray rails were designed to control the flow direction and induce a hydrodynamic lift force on the hull bottom to reduce trim angle and increase rise of the hull. The maximum trim of the bare hull was $4.65^{\circ}$ at the designed speed, but the spray rails at optimum location reduced trim by $0.97^{\circ}$. The ship motion in head seas was examined after the calm water tests. Attaching the rails on the optimum location effectively reduced the pitch and heave motion responses. The vertical acceleration at the fore perpendicular reduced by 11.3%. The effective power in full scale was extrapolated from the model test results and it was revealed that the spray rails did not have any negative effects on the resistance performance of the hull, while they effectively stabilized the vessel in calm water and waves.

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

Infinite Elements for the Evaluation of Wave Forces (파랑하중 산정을 위한 무한요소)

  • 박우선;윤정방;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1989
  • In this paper, the concept of the infinite element is applied to the linear wave diffraction and radiation problems. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The near field region surrounding the solid body is modelled using the conventional finite elements, and the far field region is represented using the infinite elements .In order to represent the scattered wave potentials in the far field region more accurately, the infinite elements are developed using special shape functions derived from the asymptotic expressions for the analytical eigenseries solution of the scattered waves. The system matrices of the infinite elements are constructed by performing the integration in the infinite direction analytically to achieve computational efficiency. Numerical analyses are carried out for vertical axisymmetric bodies to validate the infinite elements developed here. Comparisons with the results by other available numerical solution methods show that the present method using the infinite elements gives fairly good results. Numerical experiments are per-formed to determine the suitable location of the infinite elements and the appropriate size of the finite elements which directly affect accuracy and efficiency of the solution.

  • PDF

A Study on the Tendency on Conversion of Passenger ship (여객선 컨버젼(Conversion) 동향에 대한 연구)

  • Kim, Young-Seop
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • When the laws about the security of ships are revised, or voyage conditions are changed, ship owners have converted rather than built new passenger ships including cruise ships recently. As conversion causes a lot of changes in principal dimension, structural strength, hydrodynamic performance, the number of passengers, and cargo capacity, detailed pre-review is needed. But any studies on conversion have not been carried out yet, this study investigated and analyzed the trend of consulting companies' reports (Delta Marine Report, 2005, 2008). As a result, it was found that lengthening conversion brought about the main changes in principal dimension, and performance. Also it was suggested that there be factors for consideration like hull scantling, hull form, and cutting point to minimize side effects when ship owners build ships having lengthening conversion in mind.