Browse > Article
http://dx.doi.org/10.5303/JKAS.2020.53.2.49

DECAY OF TURBULENCE IN FLUIDS WITH POLYTROPIC EQUATIONS OF STATE  

Lim, Jeonghoon (Department of Astronomy and Space Science, Chungnam National University)
Cho, Jungyeon (Department of Astronomy and Space Science, Chungnam National University)
Publication Information
Journal of The Korean Astronomical Society / v.53, no.2, 2020 , pp. 49-57 More about this Journal
Abstract
We present numerical simulations of decaying hydrodynamic turbulence initially driven by solenoidal (divergence-free) and compressive (curl-free) drivings. Most previous numerical studies for decaying turbulence assume an isothermal equation of state (EOS). Here we use a polytropic EOS, P ∝ ργ, with polytropic exponent γ ranging from 0.7 to 5/3. We mainly aim at determining the effects of γ and driving schemes on the decay law of turbulence energy, E ∝ t. We additionally study probability density function (PDF) of gas density and skewness of the distribution in polytropic turbulence driven by compressive driving. Our findings are as follows. First of all, we find that even if γ does not strongly change the decay law, the driving schemes weakly change the relation; in our all simulations, turbulence decays with α ≈ 1, but compressive driving yields smaller α than solenoidal driving at the same sonic Mach number. Second, we calculate compressive and solenoidal velocity components separately and compare their decay rates in turbulence initially driven by compressive driving. We find that the former decays much faster so that it ends up having a smaller fraction than the latter. Third, the density PDF of compressively driven turbulence with γ > 1 deviates from log-normal distribution: it has a power-law tail at low density as in the case of solenoidally driven turbulence. However, as it decays, the density PDF becomes approximately log-normal. We discuss why decay rates of compressive and solenoidal velocity components are different in compressively driven turbulence and astrophysical implication of our findings.
Keywords
ISM: general; hydrodynamics; turbulence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cho, J. & Lazarian, A. 2002, Compressible Sub-Alfvenic MHD Turbulence in Low-${\beta}$ Plasmas, Phys. Rev. Lett., 88, 245001   DOI
2 Cho, J., Lazarian, A., & Vishniac, E. T. 2002, Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium, ApJ, 564, 291   DOI
3 Davidovits, S. & Fisch, N. J. 2017, A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation, ApJ, 838, 118   DOI
4 Federrath, C., Roman-Duval, J., Klessen, R. S., et al. 2010, Comparing the Statistics of Interstellar Turbulence in Simulations and Observations. Solenoidal versus Compressive Turbulence Forcing, A&A, 512, A81   DOI
5 Federrath, C. & Banerjee, S. 2015, The Density Structure and Star Formation Rate of Non-isothermal Polytropic Turbulence, MNRAS, 448, 3297   DOI
6 Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2017, The Link between Solenoidal Turbulence and Slow Star Formation in G0.253+0.016, Proc. IAU Symp. 322, 123
7 Ferriere, K. M. 2001, The Interstellar Environment of our Galaxy, Rev. Mod. Phys., 73, 1031   DOI
8 Glover, S. C. O. & Mac Low, M.-M. 2007, Simulating the Formation of Molecular Clouds. I. Slow Formation by Gravitational Collapse from Static Initial Conditions, ApJS, 169, 239   DOI
9 Glover, S. C. O. & Mac Low, M.-M. 2007, Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions, ApJ, 659, 1317   DOI
10 Goldreich, P. & Sridhar, S. 1995, Toward a Theory of Interstellar Turbulence. II. Strong Alfvenic Turbulence, ApJ, 438, 763   DOI
11 Larson, R. B. 1981, Turbulence and Star Formation in Molecular Clouds, MNRAS, 194, 809   DOI
12 Lesieur, M. 2008, Turbulence in Fluids (Dordrecht: Springer)
13 Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds, Phys. Rev. Lett., 80, 2754   DOI
14 Mac Low, M.-M. & Klessen, R. S. 2004, Control of Star Formation by Supersonic Turbulence, Rev. Mod. Phys., 76, 125   DOI
15 Masunaga, H. & Inutsuka, S. 2000, A Radiation Hydrodynamical Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar, ApJ, 531, 350   DOI
16 Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models, ApJ, 546, 980   DOI
17 Scalo, J., Vazquez-Semadeni, E., Chappell, D., & Passot, T. 1998, On the Probability Density Function of Galactic Gas. I. Numerical Simulations and the Significance of the Polytropic Index, ApJ, 504, 835   DOI
18 Padoan, P., Nordlund, A., & Jones, B. J. T. 1997, The Universality of the Stellar Initial Mass Function, MNRAS, 288, 145   DOI
19 Padoan, P. & Nordlund, A. 2002, The Stellar Initial Mass Function from Turbulent Fragmentation, ApJ, 576, 870   DOI
20 Passot, T. & Vazquez-Semadeni, E. 1998, Density Probability Distribution in One-dimensional Polytropic Gas Dynamics, Phys. Rev. E, 58, 4501   DOI
21 Spaans, M. & Silk, J. 2000, The Polytropic Equation of State of Interstellar Gas Clouds, ApJ, 538, 115   DOI
22 Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, Dissipation in Compressible Magnetohydrodynamic Turbulence, ApJL, 508, L99   DOI
23 Vazquez-Semadeni, E., Passot, T., & Pouquet, A. 1996, Influence of Cooling-induced Compressibility on the Structure of Turbulent Flows and Gravitational Collapse, ApJ, 473, 881   DOI
24 Bisnovatyi-Kogan, G. S. & Moiseenko, S. G. 2016, Isentropic "Shock Waves" in Numerical Simulations of Astrophysical Problems, Astrophys., 59, 1   DOI
25 Li, Y., Klessen, R. S., & Mac Low, M.-M. 2003, The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State, ApJ, 592, 975   DOI
26 Biskamp, D., & Muller, W.-C. 1999, Decay Laws for Three-Dimensional Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 83, 2195   DOI