• Title/Summary/Keyword: human prostate cancer cell

Search Result 200, Processing Time 0.022 seconds

Inhibitory Effect of Beet Extract on Cancer Cell Proliferation (비트 추출물의 암세포 증식 저해 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.257-262
    • /
    • 2022
  • The purpose of this study was to examine the inhibition of human cancer cell proliferation by using various concentrations of Beet Extract containing various bioactive ingredients. The six cancer cell lines used in the experiment were prostate cancer cells DU-145, lung cancer cells A549, breast cancer cells MCF-7, cervical cancer cells HeLa, liver cancer cells SNU-182, and biliary tract cancer cells SNU-1196. Human-derived cancer cell lines were used. The inhibition of cancer cell proliferation at various concentrations of Beet Extract was measured by the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Beet Extract significantly and concentration-dependently inhibited DU145 of prostate cancer cells at all concentrations, and Lung cancer cells A549 and DU-145 of prostate cancer cells at 100ug/mL and 1000ug/mL, cervical cancer cells HeLa, and liver cancer cells SNU- 182, biliary tract cancer cell SNU-1196 showed significant proliferation inhibition at 1000ug/mL. Experiment result, the cancer cell proliferation inhibitory mechanisms of Beet Extract using various human-derived cancer cell lines can be considered to provide cancer prevention effects and the possibility of developing functional foods.

Emerging Roles of Human Prostatic Acid Phosphatase

  • Kong, Hoon Young;Byun, Jonghoe
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed.

Effect of Isoimperatorin on the Proliferation of Prostate Cancer Cell Line DU145 Cells

  • Kang, Ja-Hoon;Lee, Soo-Kyeon;Yim, Dong-Sool
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.185-189
    • /
    • 2005
  • We isolated a coumarin compound, isoimperatorin ($C_{16}H_{14}O_4$ mw: 270) from Angelica koreana through silica gel column chromatography, and characterized it by NMR. Here, for the first time we observed that isoimperatorin (25, 50 and 100 ${\mu}M$) treatment for 24-72h inhibited growth and induced death in human prostate carcinoma DU145 cells. Further, in mechanistic investigation, isoimperatorin-induced cell growth inhibition was associated with a strong increase in G1 arrest in cell cycle progression, which started at 24h of the treatment. These findings suggest a novel anticancer efficacy of isoimperatorin mediated via induction of G1 arrest against hormone refractory human prostate carcinoma DU145 cells.

Vitamin C Enhances the Effect of Etoposide to Inhibit Human Prostate Cancer Growth in vitro (Vitamin C+etoposide 복합투여에 의한 전립선 암세포 성장 억제의 상승 효과)

  • Lee, Myeong-Seon
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • Etoposide (Eto) is chemotherapeutic compounds that is currently used in the treatment of metastatic prostate cancer but new therapeutic agents are needed for the treatment of androgen-independent prostate cancer. The objective of the present study was to determine whether vitamin C (VC), the antioxidant, plays a role in regulating the growth of prostate cancer cell lines and whether VC has synergistic effect to tumor cell killing by chemotherapeutic drugs. Androgen-dependent LNCaP and androgen-independent DU-145 prostate cancer cell lines were used in this study. Both cells presented increase of dose- and time-dependent cytotoxicity in Eto-treated cultures. The combined treatment with Eto and VC significantly increased the percentage of apoptotic cells compared to Eto-treated cells(p<0.05). The present findings demonstrated that VC inhibited the growth of prostate cancer cell lines by Eto-mediated cytotoxicity and induced apoptosis. These results suggest that the chemotherapeutic effect of Eto on prostate cancer can be enhanced by VC.

Inhibitory Effect of 4-Aryl 2-Substituted Aniline-thiazole Analogs on Growth of Human Prostate Cancer LNCap Cells

  • Baek, Seung-Hwa;Kim, Nak-Jeong;Kim, Seong-Hwan;Park, Kwang-Hwa;Jeong, Kyung-Chae;Park, Bae-Keun;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.111-114
    • /
    • 2012
  • Androgen receptor (AR) is ligand-inducible nuclear hormone receptor which has been focused on key molecular target in growth and progression of prostate cancer. We synthesized a series of 4-aryl 2-substituted aniline-thiazole analogs and evaluated their anti-cancer activity in AR-dependent human prostate cancer LNCap cells. Among them, the compound 6 inhibited the tumor growth in LNCap-inoculated xenograft model.

in vitro Assessment of Antineoplastic Effects of Deuterium Depleted Water

  • Soleyman-Jahi, Saeed;Zendehdel, Kazem;Akbarzadeh, Kambiz;Haddadi, Mahnaz;Amanpour, Saeid;Muhammadnejad, Samad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2179-2183
    • /
    • 2014
  • Background: In vitro, in vivo and clinical studies have demonstrated anti-cancer effects of deuterium depleted water (DDW). The nature of this agents action, cytotoxic or cytostatic, remains to be elucidated. We here aimed to address the point by examining effects on different cell lines. Materials and Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) -based cytotoxicity analysis was conducted for human breast, stomach, colon, prostate cancer and glioblastoma multiforme cell lines as well as human dermal fibroblasts. The cell lines were treated with decreasing deuterium concentrations of DDW alone, paclitaxel alone and both. One way analysis of variance (ANOVA) was used for statistical analysis. Results: Treatment with different deuterium concentrations of DDW alone did not impose any significant inhibitory effects on growth of cell lines. Paclitaxel significantly decreased the survival fractions of all cell lines. DDW augmented paclitaxel inhibitory effects on breast, prostate, stomach cancer and glioblastoma cell lines, with influence being more pronounced in breast and prostate cases. Conclusions: DDW per se does not appear to have inhibitory effects on the assessed tumor cell lines as well as normal fibroblasts. As an adjuvant, however, DDW augmented inhibitory effects of paclitaxel and thus it could be considered as an adjuvant to conventional anticancer agents in future trials.

Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

  • Hur, Jung-Mu;Kim, Dong-Ho
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to $^{60}Co\;{\gamma}$-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant NAC inhibited berberine and radiation-induced cell death. Bax, caspase-3, p53, p38, and JNK activation increased, but activation of Bcl-2, ERK, and HO-1 decreased with berberine treatment with or without irradiation. Berberine inhibited the anti-apoptotic signal pathway involving the activation of the HO-1/NF-${\kappa}B$-mediated survival pathway, which prevents radiation-induced cell death. Our data demonstrate that berberine inhibited the radioresistant effects and enhanced the radiosensitivity effects in human prostate cancer cells via the MAPK/caspase-3 and ROS pathways.

MicroRNA-497 Suppresses Proliferation and Induces Apoptosis in Prostate Cancer Cells

  • Wang, Li;Li, Bo;Li, Lei;Wang, Te
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3499-3502
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of endogenously expressed small, non-coding, single-stranded RNAs that negatively regulate gene expression, mainly by binding to 3'- untranslated regions (3'UTR) of their target messenger RNAs (mRNAs), which cause blocks of translation and/or mRNA cleavage. Recently, miRNAprofiling studies demonstrated the microRNA-497 (miR-497) level to be down-regulated in all prostate carcinomas compared with BPH samples. The purpose of this study was to investigate the potential role of miR-497 in human prostate cancer. Proliferation, cell cycle and apoptosis assays were conducted to explore the potential function of miR-497 in human prostate cancer cells. Results showed that miR-497 suppressed cellular growth and initiated G0/G1 phase arrest of LNCaP and PC-3 cells. We also observed that miR-497 increased the percentage of apoptotic cells by increasing caspase-3/7 activity. Taken together, our results demonstrated that miR-497 can inhibit growth and induce apoptosis by caspase-3 activation in prostate cancer cells, which suggest its use as a potential therapeutic target in the future.

Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells

  • Cui, Xingang;Xu, Danfeng;Lv, Chao;Qu, Fajun;He, Jin;Chen, Ming;Liu, Yushan;Gao, Yi;Che, Jianping;Yao, Yacheng;Yu, Hongyu
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.547-552
    • /
    • 2011
  • MED19 is a member of the Mediator that plays a key role in the activation and repression of signal transduction or the regulation of transcription in carcinomas. To tested the functional role of MED19 in human prostate cancer, we downregulated MED19 expression in prostate cancer cells (PC-3 and DU145) by lentivirus-mediated short hairpin (shRNA), and analyzed the effect of inhibition of MED19 on prostate cancer cell proliferation and tumorigenesis. The in vitro prostate cancer cell proliferation, colony formation, and in vivo tumor growth in nude mice xenografts was significantly reduced after the downregulation of MED19. Knockdown of MED19 caused S-phase arrest and induced apoptosis via modulation of Bid and Caspase 7. It was suggested that MED19 serves as a novel proliferation regulator that promotes growth of prostate cancer cells.