Browse > Article
http://dx.doi.org/10.5487/TR.2010.26.2.109

Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells  

Hur, Jung-Mu (Chong Kun Dang Healthcare Crop. Research Center)
Kim, Dong-Ho (Radiation Research Center for Bio-Technology, Korea Atomic Energy Research Institute)
Publication Information
Toxicological Research / v.26, no.2, 2010 , pp. 109-115 More about this Journal
Abstract
The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to $^{60}Co\;{\gamma}$-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant NAC inhibited berberine and radiation-induced cell death. Bax, caspase-3, p53, p38, and JNK activation increased, but activation of Bcl-2, ERK, and HO-1 decreased with berberine treatment with or without irradiation. Berberine inhibited the anti-apoptotic signal pathway involving the activation of the HO-1/NF-${\kappa}B$-mediated survival pathway, which prevents radiation-induced cell death. Our data demonstrate that berberine inhibited the radioresistant effects and enhanced the radiosensitivity effects in human prostate cancer cells via the MAPK/caspase-3 and ROS pathways.
Keywords
Berberine; Radiation; Apoptosis; Radioresistant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Szotowski, B., Antoniak, S., Goldin-Lang, P., Tran, Q.V., Pels, K., Rosenthal, P., Bogdanov, V.Y., Borchert, H.H., Schultheiss, H.P. and Rauch, U. (2007). Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc. Res., 73, 806-812.   DOI   ScienceOn
2 Vink, S.R., Schellens, J.H., Beijnen, J.H., Sindermann, H., Engel, J., Dubbelman, R., Moppi, G., Hillebrand, M.J., Bartelink, H. and Verheij, M. (2006). Phase I and pharmacokinetic study of combined treatment with perifosine and radiation in patients with advanced solid tumours. Radiother. Oncol., 80, 207-213.   DOI   ScienceOn
3 Wada, T. and Penninger, J.M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene., 23, 2838-2849.   DOI   ScienceOn
4 Wang, H.G. and Reed, J.C. (1998). Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors., 8, 13-16.   DOI
5 Wilson, R.E., Taylor, S.L., Atherton, G.T., Johnston, D., Waters, C.M. and Norton, J.D. (1993). Early response gene signaling cascades activated by ionizing radiation in primary human B cells. Oncogene., 8, 3229-3237.
6 Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326-1331.   DOI   ScienceOn
7 Zhang, Y. and Chen, F. (2004). Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res., 64, 1902-1905.   DOI   ScienceOn
8 Kaminski, J.M., Hanlon, A.L., Joon, D.L., Meistrich, M., Hachem, P. and Pollack, A. (2003). Effect of sequencing of androgen deprivation and radiotherapy on prostate cancer growth. Int. J. Radiat. Oncol. Biol. Phys., 57, 24-28.
9 Keyse, S.M. and Tyrrell, R.M. (1989). Heme oxygenase is the major 32-kDastress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA, 86, 99-103.   DOI   ScienceOn
10 Kucharczak, J., Simmons, M.J., Fan, Y. and Gelinas, C. (2003). To be, or not to be: NF-kappaB is the answer role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene., 22, 8961-8982.   DOI   ScienceOn
11 Rosser, C.J., Reyes, A.O., Vakar-Lopez, F., Levy, L.B., Kuban, D.A., Hoover, D.C., Lee, A.K. and Pisters, L.L. (2003). Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 56, 1-6.
12 Kuo, C.L., Chi, C.W. and Liu, T.Y. (2004). The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett., 203, 127-137.   DOI   ScienceOn
13 Kuo, C.L., Chi, C.W. and Liu, T.Y. (2005). Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo., 19, 247-252.
14 Lau, C.W., Yao, X.Q., Chen, Z.Y., Ko, W.H. and Huang, Y. (2001). Cardiovascular actions of berberine. Cardiovasc. Drug Rev., 3, 234-244.
15 Rosser, C.J., Tanaka, M., Pisters, L.L., Tanaka, N., Levy, L.B., Hoover, D.C., Grossman, H.B., McDonnell, T.J., Kuban, D.A. and Meyn, R.E. (2004). Adenoviral-mediated PTEN transgene expression sensitizes Bcl-2-expressing prostate cancer cells to radiation. Cancer Gene Ther., 11, 273-279.   DOI   ScienceOn
16 Bohnke, A., Westphal, F., Schmidt, A., El-Awady, R.A. and Dahm-Daphi, J. (2004). Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int. J. Radiat. Biol., 80, 53-63.   DOI   ScienceOn
17 Bristow, R., Benchimol, S. and Hill, R. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother. Oncol., 40, 197-223.   DOI   ScienceOn
18 Bristow, R., Benchimol, S. and Hill, R. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother. Oncol., 40, 197-223.   DOI   ScienceOn
19 Carson, C.C. (2006). Carcinoma of the prostate: overview of the most common malignancy in men. N. C. Med. J., 67, 122-126.
20 Colombo, R., Naspro, R., Salonia, A., Montorsi, F., Raber, M., Suardi, N., Sacca, A. and Rigatti, P. (2006). Radical prostatectomy after previous prostate surgery: clinical and functional outcomes. J. Urol., 176, 2459-2463.   DOI   ScienceOn
21 Corbiere, C., Liagre, B., Terro, F. and Beneytout, J.L. (2004). Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res., 14, 188-196.   DOI   ScienceOn
22 Greenlee, R.T., Murray, T., Bolden, S. and Wingo, P.A. (2000). Cancer statistics. Cancer J. Clinic., 50, 7-33.   DOI   ScienceOn
23 He, Z.W., Zhao, X.Y., Xu, R.Z. and Wu, D. (2006). Effects of berbamine on growth of leukemia cell line NB4 and its mechanism. Zhejiang Da. Xue. Xue. Bao. Yi. Xue. Ban., 35, 209-214.
24 Hwang, J.M., Kuo, H.C., Tseng, T.H. and Liu, Y.J. (2006). Berberine induces apoptosis through a mitochondria/caspase pathway in human hepatoma cells. Arch. Toxicol., 2, 62-73.
25 Bohnke, A., Westphal, F., Schmidt, A., El-Awady, R.A. and Dahm-Daphi, J. (2004). Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int. J. Radiat. Biol., 80, 53-63.   DOI   ScienceOn
26 Baldwin, A.S. (1996). The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu. Rev. Immunol., 14, 649-683.   DOI   ScienceOn
27 Bergman, P.J. and Harris, D. (1997). Radioresistance, chemoresistance, and apoptosis resistance. The past, present, and future. Vet. Clin. N. Am-Small., 27, 47-57.   DOI
28 Blumenstein, M., Hossfeld, D.K. and Duhrsen, U. (1998). Indirect radiation leukemogenesis in DBA/2 mice: increased expression of B2 repeats in FDC-P1 cells transformed by intracisternal Aparticle transposition. Ann. Hematol., 76, 53-60.   DOI