Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.8.547

Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells  

Cui, Xingang (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Xu, Danfeng (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Lv, Chao (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Qu, Fajun (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
He, Jin (Pathology Department, Changzheng Hospital Affiliated to the Second Military Medical University)
Chen, Ming (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Liu, Yushan (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Gao, Yi (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Che, Jianping (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Yao, Yacheng (Urology Department of Surgery, Changzheng Hospital Affiliated to the Second Military Medical University)
Yu, Hongyu (Pathology Department, Changzheng Hospital Affiliated to the Second Military Medical University)
Publication Information
BMB Reports / v.44, no.8, 2011 , pp. 547-552 More about this Journal
Abstract
MED19 is a member of the Mediator that plays a key role in the activation and repression of signal transduction or the regulation of transcription in carcinomas. To tested the functional role of MED19 in human prostate cancer, we downregulated MED19 expression in prostate cancer cells (PC-3 and DU145) by lentivirus-mediated short hairpin (shRNA), and analyzed the effect of inhibition of MED19 on prostate cancer cell proliferation and tumorigenesis. The in vitro prostate cancer cell proliferation, colony formation, and in vivo tumor growth in nude mice xenografts was significantly reduced after the downregulation of MED19. Knockdown of MED19 caused S-phase arrest and induced apoptosis via modulation of Bid and Caspase 7. It was suggested that MED19 serves as a novel proliferation regulator that promotes growth of prostate cancer cells.
Keywords
Gene silencing; MED19; Proliferation; Tumorigenesis;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Varambally, S., Laxman, B., Mehra, R., Cao, Q., Dhanasekaran, S. M., Tomlins, S. A., Granger, J., Vellaichamy, A., Sreekumar, A., Yu, J., Gu, W., Shen, R., Ghosh, D., Wright, L. M., Kladney, R. D., Kuefer, R., Rubin, M. A., Fimmel, C. J. and Chinnaiyan, A. M. (2008) Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia 10, 1285-1294.   DOI
2 Xu, Y., Wang, Z., Wang, J., Li, J., Wang, H. and Yue, W. (2010) Lentivirus-mediated knockdown of cyclin Y (CCNY) inhibits glioma cell proliferation. Oncol. Res. 18, 359-364.   DOI
3 Vijayvargia, R., May, M. S. and Fondell, J. D. (2007) A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 67, 4034-4041.   DOI   ScienceOn
4 Zou, S. W., Ai, K. X., Wang, Z. G., Yuan, Z., Yan, J. and Zheng, Q. (2011) The role of Med19 in the proliferation and tumorigenesis of human hepatocellular carcinoma cells. Acta. Pharmacol. Sin. 32, 354-360.   DOI   ScienceOn
5 Shi, D. L., Wang, C. G., Wang, B. and Zhang, X. Y. (2011) MED19 promotes proliferation and tumorigenesis of lung cancer. Mol. Cell Biochem. DOI: 10.1007/s11010-011-0835-0.   DOI
6 Malik, A., Afaq, F., Sarfaraz, S., Adhami, V. M., Syed, D. N. and Mukhtar, H. (2005) Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc. Natl. Acad. Sci. 102, 14813-14818.   DOI   ScienceOn
7 Li, Z. F., Wang, Z. D., Ji, Y. Y., Zhang, S., Huang, C., Li, J. and Xia, X. M. (2009) Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract. World J. Gastroenterol. 15, 4538-4546.   DOI
8 Sarfaraz, S., Afag, F., Adhami, V. M., Malik, A. and Mukhtar, H. (2006) Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J. Biol. Chem. 281, 39480-39491.   DOI   ScienceOn
9 Ahmad, N., Feyes, D. K., Agarwal, R. and Mukhtar, H. (1998) Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc. Natl. Acad. Sci. 95, 6977-6982.   DOI
10 Sanchez, G., Coronado, X., Zulantay, I., Apt, W., Gajardo, M., Solari, S. and Venegas, J. (2005) Monitoring the efficacy of specific treatment in chronic chagas disease by polymerase chain reaction and flow cytometry analysis. Parasite 12, 353-357.   DOI   ScienceOn
11 Sato, S., Tomomori-Sato, C., Banks, C. A., Parmely, T. J., Sorokina, I., Brower, C. S., Conaway, R. C. and Conaway, J. W. (2003) A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex. J. Biol. Chem. 278, 49671-49674.   DOI   ScienceOn
12 Rosenblum-Vos, L. S., Rhodes, L., Evangelista, C. C. Jr., Boayke, K. A. and Zitomer, R. S. (1991) The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol. Cell Biol. 11, 5639-5647.   DOI
13 Becerra, M., Lombardía-Ferreira, L. J., Hauser, N. C., Hoheisel, J. D., Tizon, B. and Cerdán, M. E. (2002) The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol. Microbiol. 43, 545-555.   DOI   ScienceOn
14 Gustafsson, C. M., Myers, L. C., Li, Y., Redd, M. J., Lui, M., Erdjument-Bromage, H., Tempst, P. and Kornberg, R. D. (1997) Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J. Biol. Chem. 272, 48-50.   DOI   ScienceOn
15 Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T. and Conaway, J. W. (2005) The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250-255.   DOI   ScienceOn
16 Baidoobonso, S. M., Guidi, B. W. and Myers, L. C. (2007) MED19 (Rox3) regulates Intermodule interactions in the Saccharomyces cerevisiae mediator complex. J. Biol. Chem. 282, 5551-5559.   DOI   ScienceOn
17 Ding, N., Tomomori-Sato, C., Sato, S., Conaway, R. C., Conaway, J. W. and Boyer, T. G. (2009) MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. J. Biol. Chem. 284, 2648-2656.   DOI   ScienceOn
18 Sato, S., Tomomori-Sato, C., Parmely, T. J., Florens, L., Zybailov, B., Swanson, S. K., Banks, C. A., Jin, J., Cai, Y., Washburn, M. P., Conaway, J. W. and Conaway, R. C. (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685-691.   DOI   ScienceOn
19 Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. and Thun, M. J. (2007) Cancer statistics. CA Cancer J. Clin. 57, 43-66.   DOI   ScienceOn
20 Grönberg, H. (2003) Prostate cancer epidemiology. Lancet 361, 859-864.   DOI   ScienceOn
21 Walczak, J. R. and Carducci, M. A. (2007) Prostate cancer: a practical approach to current management of recurrent disease. Mayo. Clin. Proc. 82, 243-249.   DOI   ScienceOn
22 Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K. J., Rubin, M. A. and Chinnaiyan, A. M. (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822-826.   DOI   ScienceOn