• Title/Summary/Keyword: human keratinocyte cell line

Search Result 50, Processing Time 0.02 seconds

Development of S-Methylmethionine Sulfonium Derivatives and Their Skin-Protective Effect against Ultraviolet Exposure

  • Kim, Won-Serk;Kim, Wang-Kyun;Choi, Nahyun;Suh, Wonhee;Lee, Jinu;Kim, Dae-Duk;Kim, Ikyon;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.306-312
    • /
    • 2018
  • In a previous study, we have demonstrated that S-methylmethionine sulfonium (SMMS) confers wound-healing and photoprotective effects on the skin, suggesting that SMMS can be used as a cosmetic raw material. However, it has an unpleasant odor. Therefore, in the present study, we synthesized odor-free SMMS derivatives by eliminating dimethyl sulfide, which is the cause of the unpleasant odor and identified two derivatives that exhibited skin-protective effects: one derivative comprised (2S,4S)- and (2R,4S)-2-phenylthiazolidine-4-carboxylic acid and the other comprised (2S,4R)-, (2S,4S)-, (2R,4R)-, and (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid. We performed in vitro proliferation assays using human dermal fibroblasts (hDFs) and an immortalized human keratinocyte cell line (HaCaT). The two SMMS derivatives were shown to increase hDF and HaCaT cell proliferation as well as improve their survival by protecting against ultraviolet exposure. Moreover, the derivatives regulated the expression of collagen type I and MMP mRNAs against ultraviolet exposure in hDFs, suggesting that these derivatives can be developed as cosmetic raw materials.

Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

  • Kim, Won-Serk;Kim, Ikyon;Kim, Wang-Kyun;Choi, Ju-Yeon;Kim, Doo Yeong;Moon, Sung-Guk;Min, Hyung-Keun;Song, Min-Kyu;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.305-311
    • /
    • 2016
  • Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.

Isolation and Characterization of MMP-1 Inhibitor Peptide from Crataegus pinnatifida Bunge in Fibroblast Cell Line HS68 Cells (아가위(Crataegus pinnatifida Bunge)로 부터 HS 68세포의 MMP-1에 대한 저해활성 물질의 분리)

  • Lee, Se-Young;Chun, Hyug;Cho, Hong-Yun;An, Jeung-Hee
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • MMP-1 inhibitory compounds were isolated from 120 Korean traditional edible plants. UP- 1 activity significantly increased linearly with increasing UVB dose in normal human foreskin fibroblast HS68 cell, showing maximum activity at approximately 35 $mJ/cm^2$, whereas in HaCaT cell, normal human keratinocyte, no increase was observed. Maximum secretion of MMP-1 after UVB treatment occurred around 36-48 k after treatment. MMP-1 inhibitory compound isolated from cold-water fraction of Cataegus pinnatifida Bunge showed the mort potent activity. The MMP-1 inhibitory compound was deduced as a peptide based on the fact that pronase digestion decreased the activity whereas periodate oxidation did not. The most potent UP- 1-inhibitory protein, CP-2Va-2, showing an activity of 88.5% against MMP-1, was isolated through sequential column chromatography on DEAE-Toyopearl 650C, Butyl-Toyopearl 650M, and Bio-Gel P-30. Molecular weight of CP-2Va-2 determined through high performance liquid chromatography and SDS PACE was 19 and 20 kDa. respectively, signifying a monomeric structure.

Hexane Fraction of Melandrium firmum Extract Induces Laminin-332 Expression in Human Keratinocyte (각질형성세포에서 왕불유행 헥산 분획물이 Laminin-332 발현에 미치는 효과)

  • Song, Hye Jin;Kim, Mi-Sun;Lee, Hong Gu;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • Skin basement membrane (BM) is a specialized structure that binds dermis and epidermis of the skin and plays an important role in maintaining skin structure. Structural change and destruction of BM is reported to appear due to UV exposure and aging, which may contribute to skin aging including wrinkle formation and a decrease in elasticity of the skin. One of the key components of the BM is laminin-332 (LN-332), and is a major contributor to epidermal-dermal attachment. In this study, we elucidated the effects of Meladrium firmum hexane fraction (MFHF) on LN-332 expression in HaCaT, a human keratinocyte cell line. Quantitative real-time PCR (RT-PCR) and immunoblot analysis revealed that MFHF induced upregulation of LN-332 gene and protein expression. Next, cells were treated with p38 MAPK inhibitor (SB202190) prior to MFHF treatment to analyze the signaling pathway contributing to LN-332 expression. The mRNA and protein levels of LN-332 expression were suppressed completely by pretreatment with p38 MAPK inhibitor. Furthermore, MFHF also increased the mRNA level of collagen type VII and integrin ${\alpha}6$ of skin BM component. These results collectively suggest that MFHF may have potential as an effective agent to stimulate the synthesis of BM components, and could be used to improve phenomenon of skin aging ascribed to the structural and functional impairments of BM in aged human skin.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Chemical Transformation of Human Keratinocytes by 2,3,7,8-Tetrachlorodibenxo-$\rho$-dioxin

  • Kang, Mi-Kyung;Choi, Young-Sill;Ryeom, Tai-Kyung;Eom, Mi-Ok;Park, Mi-Sun;Jee, Seung-Won;Kim, Kang-Ryune;Kim, Ok-Hee;Kang, Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.3
    • /
    • pp.69-76
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) is a ubiquitous, persistent environmental contaminant and the most powerful carcinogen categorized by IARC. Although the mechanism of carcinogenesis by TCDD is poorly understood, several studies have shown that the skin is one of target organs far TCDD. In this study, we investigated the neoplastic transformation of human keratinocyte-derived cell line, HaCaT, by chemical transformation method using N-methyl-N'-nitro-N-nitrorsoguanidine(MNNG) and TCDD. We found that subsequent exposure to TCDD for 3 weeks after initial exposure to MNNG markedly induced transformed cells. It was suggested that TCDD can act as a potent promoter in HaCaT cells. Furthermore, these transformed cells showed morphological alternations in soft agar and increased telomerase activity. Therefore, the TCDD treatment of HaCaT cells by initiated with MNNG could promote neoplastic transformation without stimulation by exogenous growth factors. As a result, TCDD had a strong potency as a promoter in nontumorigenic immortalized human epidermal keratinocytes.

  • PDF

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

Hyaluronidase Inhibitory and Antioxidant Activities of Enzymatic Hydrolysate from Jeju Island Red Sea Cucumber (Stichopus japonicus) for Novel Anti-aging Cosmeceuticals

  • Ding, Yuling;Jiratchayamaethasakul, Chanipa;Kim, Eun-A;Kim, Junseong;Heo, Soo-Jin;Lee, Seung-Hong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.62-72
    • /
    • 2018
  • An active ingredient with hyaluronidase (HAse) inhibitory effect is one of the anti-aging approaches in cosmeceuticals. Here, red sea cucumbers (RSCs), Stichopus japonicus, from Jeju Island were evaluated to examine their HAse inhibitory and antioxidant activity effect. In this study, RSCs were extracted by six enzymatic hydrolysis (Alcalase; Al, Trypsin; Try, Neutrase; Neu, Pepsin; Pep, Alpha-chymotrypsin; Chy and Protamex; Pro). Alcalase hydrolysate (AlH) showed the highest antioxidant capacities for both of oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant capacity (TEAC) methods, compared to those of other hydrolysates, at $66.59{\pm}0.78{\mu}M\;TE/mg$ and $135.78{\pm}3.24{\mu}M\;TE/mg$, respectively. Furthermore, AlH performed the highest capacity of HAse inhibitory with $IC_{50}$ value of 3.21 mg/ml. Thus, RSCs hydrolyzed by Al were chosen to determine the cellular antioxidant activity and hyaluronic acid (HA) production effect on Human immortalized keratinocyte cell line (HaCaT). The results showed that AlH improved the cell viabilities and intracellular reactive oxygen species (ROS) induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) were significantly decreased. In addition, AlH increased HA amount by regulating HYAL2 and HAS2 expressions in the HaCaT cells. Taken together, AlH of RSCs collected from Jeju Island showed HAse inhibitory and antioxidant activities against skin-aging which shows its potentials can be an optional natural bioactive ingredient for novel cosmeceuticals.

Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1 (진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석)

  • Kim, Jung Min;Cho, Won June;Yoon, Hee Seung;Bang, In Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6774-6781
    • /
    • 2014
  • This study examined the efficacy and the mechanism of action of biological response modifiers, ginsenosides Rb1 and Rg1 isolated from Panax ginseng C.A. Meyer on human keratinocytes HaCaT cell lines. A non-significant cytotoxic response was obtained in the HaCaT cell lines on treatment with various concentrations of ginsenosides Rb1 and Rg1 for different time durations. Furthermore, the global changes in the mRNA profile of HaCaT cells were investigated using DNA microarrays after stimulation with the ginsenosides Rb1 and Rg1. Ginsenosides Rb1 and Rg1 strongly increased FGF2 in HaCaT cells, and were found to be a candidate gene for antioxidant activity and elasticity. Other key candidate genes for antioxidant activity, such as FANCD2, LEPR, and FAS, also show enhanced regulation in HaCaT cells treated with ginsenoside Rb1. This study will be useful for understanding the regulatory genes involved in skin elasticity and signal transduction pathway stimulated by the ginsenoside Rb1. This paper currently focuses on the key factors regulating the interaction of anti-aging principles and skin elasticity.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.