Browse > Article
http://dx.doi.org/10.15433/ksmb.2018.10.2.062

Hyaluronidase Inhibitory and Antioxidant Activities of Enzymatic Hydrolysate from Jeju Island Red Sea Cucumber (Stichopus japonicus) for Novel Anti-aging Cosmeceuticals  

Ding, Yuling (Department of Pharmaceutical Engineering, Soonchunhyang University)
Jiratchayamaethasakul, Chanipa (Department of Pharmaceutical Engineering, Soonchunhyang University)
Kim, Eun-A (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST))
Kim, Junseong (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST))
Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST))
Lee, Seung-Hong (Department of Pharmaceutical Engineering, Soonchunhyang University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.10, no.2, 2018 , pp. 62-72 More about this Journal
Abstract
An active ingredient with hyaluronidase (HAse) inhibitory effect is one of the anti-aging approaches in cosmeceuticals. Here, red sea cucumbers (RSCs), Stichopus japonicus, from Jeju Island were evaluated to examine their HAse inhibitory and antioxidant activity effect. In this study, RSCs were extracted by six enzymatic hydrolysis (Alcalase; Al, Trypsin; Try, Neutrase; Neu, Pepsin; Pep, Alpha-chymotrypsin; Chy and Protamex; Pro). Alcalase hydrolysate (AlH) showed the highest antioxidant capacities for both of oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant capacity (TEAC) methods, compared to those of other hydrolysates, at $66.59{\pm}0.78{\mu}M\;TE/mg$ and $135.78{\pm}3.24{\mu}M\;TE/mg$, respectively. Furthermore, AlH performed the highest capacity of HAse inhibitory with $IC_{50}$ value of 3.21 mg/ml. Thus, RSCs hydrolyzed by Al were chosen to determine the cellular antioxidant activity and hyaluronic acid (HA) production effect on Human immortalized keratinocyte cell line (HaCaT). The results showed that AlH improved the cell viabilities and intracellular reactive oxygen species (ROS) induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) were significantly decreased. In addition, AlH increased HA amount by regulating HYAL2 and HAS2 expressions in the HaCaT cells. Taken together, AlH of RSCs collected from Jeju Island showed HAse inhibitory and antioxidant activities against skin-aging which shows its potentials can be an optional natural bioactive ingredient for novel cosmeceuticals.
Keywords
Red sea cucumber; Enzymatic hydrolysis; Antioxidant activity; Hyaluronidase inhibitory effect; Cosmeceuticals;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sanjeewa, K. K. A., Kim, E. A., Son, K. T. and Jeon, Y. J. 2016. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. J. Photochem. Photobiol. B-Biol. 162, 100-105.   DOI
2 Wang, T., Sun, Y., Jin, L. J., Thacker, P., Li, S. and Xu, Y. 2013. Aj-rel and Aj-p105, two evolutionary conserved NF-kappa B homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity. Fish Shellfish Immunol. 34, 17-22.   DOI
3 Oh, G. W., Ko, S. C., Lee, D. H., Heo, S. J. and Jung, W. K. 2017. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review. Fish. and Aquat. Sci. 20, 28.   DOI
4 Li, L. and Li, Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquac. Int. 18, 447-460.   DOI
5 Maity, N., Nema, N. K., Abedy, Md. K., Sarkar, B. K. and Mukherjee, P. K. 2011. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol. 137, 1300-1305.   DOI
6 Kanno, M., Suyama, Y., Li, Q. and Kijima, A. 2006. Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants. Mar. Biotechnol. 8, 672-685.   DOI
7 Park, S. Y., Lim, H. K., Lee, S. J., Cho, S. K., Park, S. G. and Cho, M. J. 2011. Biological effects of various solvent fractions derived from Jeju Island red sea cucumber (Stichopus japonicas). J. Korean Soc. Appl. Biol. Chem. 54, 718-724.
8 Ko, J. Y., Lee J. H., Samarakoon, K., Kim, J. S. and Jeon, Y. J. 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 52, 113-120.   DOI
9 Ou, B., Hampsch-Woodill, M. and Prior, R. L. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619-4626.   DOI
10 Lee, S. J., Jeong, D. S., Yang, H. C., Liu, K. Z. and Lee, N. H. 2001. Screening of the tyrosinase inhibition and hyaluronidase inhibition activities, and radical scavenging effects using plants in Cheju. Ko. J. Pharmacogn. 32, 175-180.
11 Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63.   DOI
12 Wang, H. and Joseph, J. A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616.   DOI
13 Garciia, J. L., Asadinezhad, A., Pachernik, J., Lehocky, M., Junkar, I., Humpolicek P., Saha, P. and Valasek, P. 2010. Cell Proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 15, 2845-2856.   DOI
14 Lee, S. H., Yang, H. W., Ding, Y. L., Wang, Y., Jeon, Y. J., Moon, S. H., Jeon, B. T. and Sung, S. H. 2015. Anti-inflammatory effects of enzymatic hydrolysates of velvet antler in Raw 264.7 cells in vitro and zebrafish model. EXCLI J. 14, 1122-1132.
15 Lu, C. Y., Lee, H. C., Fahn, H. J. and Wei, Y. H. 1999. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res. Fundam. Mol. Mech. Mutagen. 423, 11-21.   DOI
16 Lee, S. H., Park, M. H., Park, S. J., Kim, J., Kim, Y. T., Oh, M. C., Jeong, Y., Kim, M. S., Han, J. S. and Jeon, Y. J. 2012. Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic $\beta$-cells. Appl. Biochem. Biotechnol. 167, 1973-1985.   DOI
17 Saito, M., Kunisaki, N., Urano, N. and Kimura, S. 2006. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J. Food Sci. 67, 1319-1322.
18 Zulueta, A., Esteve, M. J. and Frigola, A. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 114, 310-316.   DOI
19 Hitoshi, M. 2010. Role of antioxidants in the skin: anti-aging effects. J. Dermatol. Sci. 58, 85-90.   DOI
20 Poljsak, B. and Dahmane, R. 2012. Free Radicals and extrinsic skin aging. Dermatol Res. Practi. 2012, 135206.
21 Schieber, M. and Navdeep, S. C. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462.   DOI
22 Puri, M., Sharma, D. and Barrow, C. J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37-44.   DOI
23 Kammeyer, A. and Luiten, R. M. 2015. Oxidation events and skin aging. Ageing Res. Rev. 21, 16-29.   DOI
24 Kohen, R. 1999. Skin antioxidants: Their role in aging and in oxidative stress new approaches for their evaluation. Biomed. Pharmacother. 53, 181-192.   DOI
25 Selbi, W., Day, A. J., Rugg, M. S., Fulop, C., de la Motte, C. A., Bowen, T., Hascall, V. C. and Phillips, A. O. 2006. Overexpression of hyaluronan synthase 2 alters hyaluronan distribution and function in proximal tubular epithelial cells. J. Am. Soc. Nephrol. 17, 1553-1567.   DOI
26 Hochberg, M., Kohen, R. and Enk., C. D. 2006. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed. Pharmacother. 60, 233-237.   DOI
27 Cui, Y., Kima, D., Park, S., Yoon, J., Kima, S., Kwon, S. and Park, K. 2004. Involvement of ERK and p38 MAP kinase in AAPH-induced COX-2 expression in HaCaT cells. Chem. Phys. Lipids. 129, 43-52.   DOI
28 Zhou, X. and Wang, C. 2012. Antioxidant peptides isolated from sea cucumber Stichopus Japonicus. Eur. Food Res. Technol. 234, 441-447.   DOI
29 Stern, R. and Maibach, H. I. 2008. Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin. Dermatol. 26, 106-122.   DOI
30 Scotti, L., Singla, R. K., Ishiki, H. M., Mendonca, F. J., da Silva, M. S., Barbosa Filho, .J. M. and Scotti, M. T. 2016. Recent advancement in natural hyaluronidase Inhibitors. Curr. Top. Med. Chem. 16, 2525-2531.   DOI
31 Calve, S., Isaac, J., Gumucio, J. P. and Mendias, C. L. 2012. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am. J. Physiol. Cell Physiol. 303, C577-C588.   DOI
32 Zhang, Y., Song, S., Song, D., Liang, H., Wang, W. and Ji, A. 2010. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. J. Biosci. Bioeng. 109, 67-72.   DOI
33 Buhren, B. A., Schrump, H., Hoff, N. P., Bolke, E., Hilton, S. and Gerber, P. A. 2016. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur. J. Med. Res. 21, 5.   DOI
34 Raha, S. and Robinson B. H. 2000. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508.   DOI
35 Mukherjee, P. K., Maity, N., Nema, N. K. and Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine. 19, 64-73.   DOI
36 Ratnasooriya, W. D., Abeysekera, W. P. K. M. and Ratnasooriya, C. T. D. 2014. In vitro anti-hyaluronidase activity of Sri Lankan low grown orthodox orange pekoe grade black tea (Camellia sinensis L.). Asian Pac. J. Trop. Biomed. 4, 959-963.   DOI
37 Ndlovu, G., Fouche, G., Tselanyane, M., Cordier, W. and Steenkamp, V. 2013. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement. Altern. Med. 13, 304-311.   DOI
38 Tammi, R., Ripellino, J. A., Margolis, R. U. and Tammi Markku. 1988. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J. Invest. Dermatol. 90, 412-414.   DOI
39 Uppala, L. 2015. A review on active ingredients from marine sources used in cosmetics. SOJ Pharm. Pharm. Sci. 2, 1-3.
40 Lindequist, U. 2016. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. 24, 561-571.   DOI