Browse > Article
http://dx.doi.org/10.15230/SCSK.2016.42.2.173

Hexane Fraction of Melandrium firmum Extract Induces Laminin-332 Expression in Human Keratinocyte  

Song, Hye Jin (R&D Center, LG Household & Healthcare, Ltd.)
Kim, Mi-Sun (R&D Center, LG Household & Healthcare, Ltd.)
Lee, Hong Gu (R&D Center, LG Household & Healthcare, Ltd.)
Jin, Mu Hyun (R&D Center, LG Household & Healthcare, Ltd.)
Lee, Sang Hwa (R&D Center, LG Household & Healthcare, Ltd.)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.42, no.2, 2016 , pp. 173-181 More about this Journal
Abstract
Skin basement membrane (BM) is a specialized structure that binds dermis and epidermis of the skin and plays an important role in maintaining skin structure. Structural change and destruction of BM is reported to appear due to UV exposure and aging, which may contribute to skin aging including wrinkle formation and a decrease in elasticity of the skin. One of the key components of the BM is laminin-332 (LN-332), and is a major contributor to epidermal-dermal attachment. In this study, we elucidated the effects of Meladrium firmum hexane fraction (MFHF) on LN-332 expression in HaCaT, a human keratinocyte cell line. Quantitative real-time PCR (RT-PCR) and immunoblot analysis revealed that MFHF induced upregulation of LN-332 gene and protein expression. Next, cells were treated with p38 MAPK inhibitor (SB202190) prior to MFHF treatment to analyze the signaling pathway contributing to LN-332 expression. The mRNA and protein levels of LN-332 expression were suppressed completely by pretreatment with p38 MAPK inhibitor. Furthermore, MFHF also increased the mRNA level of collagen type VII and integrin ${\alpha}6$ of skin BM component. These results collectively suggest that MFHF may have potential as an effective agent to stimulate the synthesis of BM components, and could be used to improve phenomenon of skin aging ascribed to the structural and functional impairments of BM in aged human skin.
Keywords
basement membrane; laminin-332; Melandrium firmum; skin aging;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Chung, Photoaging in asians, Photodermatol. photoimmunnol. photomed., 19(3), 109 (2003).   DOI
2 G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanism of photoaging and chronological skin aging, Arch. Dermatol., 138(11), 1462 (2002).
3 P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2(4), 219 (2001).   DOI
4 T. Nishiyama, S. Amano, M. Tsunenaga, K. Kadoya, A. Takeda, E. Adachi, and R. E. Burgeson, The importance of laminin 5 in the dermal-epidermal basement membrane, J. Dermaltol. Sci., 25, S51 (2000).
5 C. Reymermier, A. Guezennec, J. E. Branka, J. Guesnet, and E. Perrier, In vitro stimulation of synthesis of key DEJ constituents in a reconstructed skin model: a quantitative study, Int. J. Cosmetic Sci., 25(1-2), 55 (2003).   DOI
6 S. Amano, Possible involvement of basement membrane damage in skin photoaging, J. Investig. Dermatol. Symp. Proc., 14(1), 2 (2009).   DOI
7 M. C. Ryan, A. M. Christiano, E. Engvall, U. M. Wewer, J. H. Miner, J. R. Sanes, and R. E. Burgesoni, The functions of laminins: lessons from in vivo studies, Matrix Biol., 15(6), 369 (1996).   DOI
8 F. M. Watt, Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis, J. Cell BIol., 98(1), 16 (1984).   DOI
9 A. Bohnert, J. Hornung, I. C. Mackenzie, and N. E. Fusenig, Epithelial- mesenchymal interactions control basement membrane production and differentiation in cultured and trasplanted mouse keratinocytes, Cell Tissue Res., 244(2), 413 (1986).   DOI
10 Y. Barrandon and H. Green, Three clonal types of keratinocyte with different capacities for multiplication, Proc. Natl. Acad. Sci. USA, 84(8), 2302 (1987).   DOI
11 K. Muta-Takada, T. Terada, H. Yamanishi, Y. Ashida, S. Inomata, T. Nishiyama, and S. Amano, Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells, Biofactors, 35(5), 435 (2009).   DOI
12 D. Olsen and J. Uitto, Differntial expression of type IV procollagen and laminin genes by foetal vs adult skin fibroblasts in culture; determination of subunit mRNA steady state level, J. Invest. Dermatol., 93(1), 127 (1989).   DOI
13 S. Amano, Basement membrane damage, a sign of skin early aging, and laminin 5, a key player in basement membrane care, SCCJ., 35(1), 1 (2001).
14 S. Amano, Y. Ogura, N. Akutsu, Y. Matsunaga, K. Kadoya, E. Adachi, and T. Nishiyama, Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equinalents partially mimic photoageing process, Br. J. Dermatol., 153(S2), 37 (2005).
15 Y. Ogura, Y. Matsunaga, S. T. Nishiyama, and S. Amano, Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junctions, Br. J. Dermatol., 159(1), 49 (2008).   DOI
16 Y. Chen, A. Mauviel, and J. Rynanen, Type VII collagen gene expression by human fibroblasts and keratinocytes in culture: influence of donor age on cytokine response, J. Invest. Dermatol., 102(2), 205 (1994).   DOI
17 T. Karttunen, J. Risteli, H. Autio-Harmainen, and L. Risteli, Effect of age and diabetes on type IV collagen and laminin in human kidney cortex, Kidney Int., 30(4), 586 (1986).   DOI
18 M. Y. Seo, S. Y. Chung, W. K. Choi, Y. K. Seo, S. H. Jung, J. M. Park, M. J. Seo, J. K. Park, J. W. Kim, and C. S. Park, Anti-aging effect of rice wine in cultured human fibroblasts and keratinocytes, J. Biosci. Bioeng., 107(3), 266 (2009).   DOI
19 J. Sok, N. Pineau, M. Dalko-Csiba, L. Breton, and F. Bernerd, Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative, Eur. J. Dermatol., 18(3), 297 (2008).   DOI
20 M. Yamaguchi, N. Ebihara, N. Shima, M. Kimoto, T. Funaki, S. Yokoo, A. Murakami, and S. Yamagami, Adhesion, migration and proliferation of cultured human corneal endothelial cells by laminin-5, Invest. Ophthalmol. Vis. Sci., 52(2), 679 (2011).   DOI
21 S. Amano, N. Akutsu, Y. Ogura, and T. Nishiyama, Increased of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids, Br. J. Dermatol., 151(5), 961 (2004).   DOI
22 P. Rousselle, G. P. Lunstrum, D. R. Keene, and R. E. Burgeson, Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filament, J. Cell Biol., 114(3), 567 (1991).   DOI
23 M. Aumailley, A. E. Khal, N. Knoss, and L. Tunggal, Laminin 5 processing and its integration into the ECM, Matrix Biol., 22(1), 49 (2003).   DOI
24 M. F. Champliaud, G. P. Lunstrum, P. Rousselle, T. Nishiyama, D. R. Keene, and R. E. Burgeson, Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment, J. Cell Biol., 132(6), 1189 (1996).   DOI
25 L. Pulkkinen, A. M. Christiano, T. Airenne, H. Haakana, K. Tryggvason, and J. Uitto, Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysisi bullosa, Nat. Genet., 6(3), 293 (1994).   DOI
26 D. F. Aberdam, J. Galliano, J. Vailly, L. Pulkkinen, J. Bonifas, A. M. Christiano, K. Trygvasson, J. Uitto, E. J. Epstein, J. P. Ortonne, and G. Menneguzzi, Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene for gamma 2 subunit of nicein/kalinin (laminin-5), Nat. Genet., 6(3), 299 (1994).   DOI
27 Y. K. Lee, B. O. Jung, and S. J. Chung, Antioxidant activity of water-soluble chitosan with Melandrium firmum extract, J. Chitin. Chitosan., 19(3), 201 (2014).
28 A. Takeda, K. Kadoya, N. Shioya, M. Tsunenaga, T. Nishiyama, S. Amono, and R. E. Burgeson, Pretreatment of human keratinocyte sheets with laminin 5 improves their grafting efficiency, Invest. Dermatol., 113(1), 38 (1999).   DOI
29 K. H. Lee and S. I. Lee, Comparison of pharmacological effects of melandrii herba and semen in Korea, Kyunghee Univ. Oriental. Med. J., 7(1), 353 (1984).
30 M. H. Lee, H. S. Han, and Y. J. Lee, Comparison studies on the hyperlipidemia of melandrii herba and vaccariae semen, Kor. J. Herbology., 25(3), 81 (2010).
31 N. Nagai, A. Klimava, W. H. Lee, K. Izumi-Nagai, and J. T. Handa, CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44 mapk) MPAK and the p38 MAPK signaling pathways, Invest. Ophthalmol. Vis. Sci., 50(4), 1903 (2009).   DOI
32 M. Yamada and K. Sekiguchi, Molecular basis of laminin-integrin interactions, Curr. Top. Membr., 76, 197 (2015).   DOI
33 M. Chen, M. P. Marinkovich, A. Veis, X. Cai, C. N. Rao, E. A. O'Toole, and D. T. Woodley, Interaction of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin, J. Biol. Chem., 272(23), 14516 (1997)   DOI