Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.131

Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation  

Kim, Won-Serk (Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine)
Kim, Ikyon (College of Pharmacy, Yonsei University)
Kim, Wang-Kyun (College of Pharmacy, Yonsei University)
Choi, Ju-Yeon (Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine)
Kim, Doo Yeong (College of Pharmacy, Yonsei University)
Moon, Sung-Guk (College of Pharmacy, Yonsei University)
Min, Hyung-Keun (Cleanup Dermatologic Clinic)
Song, Min-Kyu (Cleanup Dermatologic Clinic)
Sung, Jong-Hyuk (College of Pharmacy, Yonsei University)
Publication Information
Biomolecules & Therapeutics / v.24, no.3, 2016 , pp. 305-311 More about this Journal
Abstract
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Keywords
Mitochondria-Targeted vitamin E; UVB protection; Fibroblast; HaCaT; Collagen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ajith, T. A. and Jayakumar, T. G. (2014) Mitochondria-targeted agents: Future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J. Cardiol. 6, 1091-1099.   DOI
2 Burns, E. M., Tober, K. L., Riggenbach, J. A., Kusewitt, D. F., Young, G. S. and Oberyszyn, T. M. (2013) Differential effects of topical vitamin E and C E Ferulic(R) treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice. PLoS ONE 8, e63809.   DOI
3 Dong, L. F., Jameson, V. J., Tilly, D., Cerny, J., Mahdavian, E., Marin- Hernandez, A., Hernandez-Esquivel, L., Rodriguez-Enriquez, S., Stursa, J., Witting, P. K., Stantic, B., Rohlena, J., Truksa, J., Kluckova, K., Dyason, J. C., Ledvina, M., Salvatore, B. A., Moreno- Sanchez, R., Coster, M. J., Ralph, S. J., Smith, R. A. and Neuzil, J. (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717-3728.   DOI
4 Farriol, M., Mourelle, M. and Schwartz, S. (1994) Effect of vitamin C and vitamin E analog on aged fibroblasts. Rev. Esp. Fisiol. 50, 253-257.
5 Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312.   DOI
6 Herrera, E. and Barbas, C. (2001) Vitamin E: action, metabolism and perspectives. J. Physiol. Biochem. 57, 43-56.   DOI
7 Hye Kim, J., Gyu Park, S., Kim, W. K., Song, S. U. and Sung, J. H. (2015) Functional regulation of adipose-derived stem cells by PDGF-D. Stem Cells 33, 542-556.   DOI
8 Kim, W. S., Park, B. S., Park, S. H., Kim, H. K. and Sung, J. H. (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J. Dermatol. Sci. 53, 96-102.   DOI
9 Mao, G., Kraus, G. A., Kim, I., Spurlock, M. E., Bailey, T. B. and Beitz, D. C. (2011) Effect of a mitochondria-targeted vitamin E derivative on mitochondrial alteration and systemic oxidative stress in mice. Br. J. Nutr. 106, 87-95.   DOI
10 Mao, G., Kraus, G. A., Kim, I., Spurlock, M. E., Bailey, T. B., Zhang, Q. and Beitz, D. C. (2010) A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J. Nutr. 140, 1425-1431.   DOI
11 Neuzil, J., Tomasetti, M., Zhao, Y., Dong, L. F., Birringer, M., Wang, X. F., Low, P., Wu, K., Salvatore, B. A. and Ralph, S. J. (2007) Vitamin E analogs, a novel group of "mitocans," as anticancer agents: the importance of being redox-silent. Mol. Pharmacol. 71, 1185-1199.   DOI
12 Neuzil, J., Wang, X. F., Dong, L. F., Low, P. and Ralph, S. J. (2006) Molecular mechanism of 'mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett. 580, 5125-5129.   DOI
13 Newmeyer, D. D. and Ferguson-Miller, S. (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490.   DOI
14 Rocha, M., Apostolova, N., Hernandez-Mijares, A., Herance, R. and Victor, V. M. (2010) Oxidative stress and endothelial dysfunction in cardiovascular disease: mitochondria-targeted therapeutics. Curr. Med. Chem. 17, 3827-3841.   DOI
15 Offord, E. A., Gautier, J. C., Avanti, O., Scaletta, C., Runge, F., Kramer, K. and Applegate, L. A. (2002) Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic. Biol. Med. 32, 1293-1303.   DOI
16 Packer, L., Weber, S. U. and Rimbach, G. (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J. Nutr. 131, 369S-373S.   DOI
17 Placzek, M., Gaube, S., Kerkmann, U., Gilbertz, K. P., Herzinger, T., Haen, E. and Przybilla, B. (2005) Ultraviolet B-induced DNA damage in human epidermis is modified by the antioxidants ascorbic acid and D-alpha-tocopherol. J. Invest. Dermatol. 124, 304-307.   DOI
18 Shibata, A., Nakagawa, K., Kawakami, Y., Tsuzuki, T. and Miyazawa, T. (2010) Suppression of gamma-tocotrienol on UVB induced inflammation in HaCaT keratinocytes and HR-1 hairless mice via inflammatory mediators multiple signaling. J. Agric. Food Chem. 58, 7013-7020.   DOI
19 Smith, R. A., Porteous, C. M., Gane, A. M. and Murphy, M. P. (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc. Nat. Acad. Sci. U.S.A. 100, 5407-5412.   DOI
20 Song, C. and Liu, S. (2005) A new healthy sunscreen system for human: solid lipid nanoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol. 36, 116-119.   DOI
21 Traber, M. G. and Stevens, J. F. (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 51, 1000-1013.   DOI
22 Truksa, J., Dong, L. F., Rohlena, J., Stursa, J., Vondrusova, M., Goodwin, J., Nguyen, M., Kluckova, K., Rychtarcikova, Z., Lettlova, S., Spacilova, J., Stapelberg, M., Zoratti, M. and Neuzil, J. (2015) Mitochondrially targeted vitamin e succinate modulates expression of mitochondrial DNA transcripts and mitochondrial biogenesis. Antioxid. Redox Signal. 22, 883-900.   DOI