• Title/Summary/Keyword: homogeneous polynomial

Search Result 63, Processing Time 0.022 seconds

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

POLYNOMIAL FACTORIZATION THROUGH Lγ(μ) SPACES

  • Cilia, Raffaella;Gutierrez, Joaquin M.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1293-1307
    • /
    • 2009
  • We give conditions so that a polynomial be factorable through an $L_{\gamma}({\mu})$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1-factorable.

Norm and Numerical Radius of 2-homogeneous Polynomials on the Real Space lp2, (1 < p > ∞)

  • Kim, Sung-Guen
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.387-393
    • /
    • 2008
  • In this note, we present some inequalities for the norm and numerical radius of 2-homogeneous polynomials from the 2-dimensional real space $l_p^2$, (1 < p < $\infty$) to itself in terms of their coefficients. We also give an upper bound for n^{(k)}(l_p^2), (k = 2, 3, $\cdots$).

A Study on Application of Elementary Symmetric polynomials Related to School Mathematics (학교수학에 관련된 기본대칭다항식의 활용에 대한 연구)

  • Kwon, Young-In;Shin, Hyun-Gook;Kim, Moon-Sup
    • Communications of Mathematical Education
    • /
    • v.20 no.4 s.28
    • /
    • pp.595-602
    • /
    • 2006
  • In this paper we study an application of elementary symmetric polynomials related to transformation of homogeneous symmetric polynomials, factorization of polynomials, solving equation using elementary symmetric polynomials at the level of school mathematics.

  • PDF

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

ON THE VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIALS

  • Bhoosnurmath, Subhas S.;Kulkarni, Milind Narayanrao;Yu, Kit-Wing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper we consider the problem of whether certain homogeneous or non-homogeneous differential polynomials in f(z) necessarily have infinitely many zeros. Particularly, this extends a result of Gopalakrishna and Bhoosnurmath [3, Theorem 2] for a general differential polynomial of degree $\bar{d}$(P) and lower degree $\underline{d}$(P).