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ANALYTIC TYPES OF THE SURFACE SINGULARITIES
DEFINED BY SOME WEIGHTED HOMOGENEOUS
POLYNOMIALS

SEUNGPIL KANG

ABSTRACT. We classify analytically surface singularities defined by
some weighted homogeneous polynomials which are topologically
equivalent to the type 2§ + 2f + 24 = 0.

1. Introduction

It is well known by Theorem 2.8 ([5]) that surface singularities defined
by weighted homogeneous polynomials can be classified topologically by
seven classes.

The aim in this paper is to classify analytically isolated surface singu-
larities defined by some weighted homogeneous polynomials, which are
topologically equivalent to the type 23 + 25 + 2} = 0.

Let ,110 or C{zy,...,2,} be the ring of convergent power series at
the origin in C"*! and f,g € ,1O. Then the natural question arises:
What is the concrete criterion for f and g to have the same analytic
type?

It is known by Theorem 2.6 ([3]) that two germs of complex ana-
lytic hypersurface singularities defined by f and g with isolated singular
points at the origin in C**! are analytically equivalent if and only if their
moduli algebra ,1O/(f, Af) and ,,.1O/(g, Ag) are isomorphic as a C-
algebra, where (f,Af) = (f,0f/0z,...,0f/0z,) is an ideal in ,,;0
generated by f,0f/0z,...,0f/0z, and so on. In spite of the above

Received September 15, 1998. Revised June 1, 1999.

1991 Mathematics Subject Classification: 32515, 14E15.

Key words and phrases: weighted homogeneous polynomial, surface singularities.

This work was partially supported by GARC-KOSEF, 1998. The results of this
paper are contained in the author’s doctoral dissertation written under the guidance
of professor C. Kang at Seoul National University.



892 Seungpil Kang

theorem, it is still difficult to find a concrete criterion for analytic equiv-
alence between two surfaces with isolated singular points at the origin.

By Theorem 2.7 ([5]), f V = {z € C"*! : f(z) = 0} and W =
{z € C™*1 : g(2) = 0} are surface singularities at the origin defined by
weighted homogeneous polynomials f and g with the same weights, then
V and W are topologically equivalent. But, for the analytic case, V and
W may not be analytically equivalent, even though they have the same
weights.

By the above motivation, we find a necessary and sufficient condition
for given four different types of some surface singularities, which are
topologically equivalent to the type 2 + 2f + 25 = 0, to be analytically
equivalent.

2. Definitions and Known Preliminaries

Let ,+10 be the ring of germs of holomorphic functions at the origin in
C"*! and f(2o,...,2,) and g(z,... , z,) are in ;O which have isolated
singular points at the origin in C"*1.

DEFINITION 2.1. Let V = {z € C"" : f(2) =0} and W = {2z €
Cr*! : g(z) = 0} be germs of complex hypersurfaces with isolated sin-
gularity at the origin. f and g are said to have the same analytic type
of singularity at the origin, if there is a germ at the origin of biholomor-
phism ¢ : (U, O) — (Us, O) such that ¢(V) = W and ¥(0O) = O where
U, and U, are open subsets in C**!, that is, f o1 = ug where u is a unit
in ,410. Then we write f ~ g. If not, we write f % g.

DEFINITION 2.2. Two germs of holomorphic functions f, g : (C**!,0)
— (C, O) are called right equivalent if there exists a biholomorphism
@ : (C"10) — (C*1,0) such that f = go.

DEFINITION 2.3. f(zg,...,2,) is called a weighted homogeneous po-
lynomial with weights (wy, ... ,w,), where wy, ... ,w, are fixed positive
rational numbers, if it can be expressed as a linear combination of mono-
mials 202 - - zi» for which fg +--- :—)’;— =1

DEFINITION 2.4. f € ,,10 is called quasihomogeneous if f =~ g for
some weighted homogeneous polynomial g.
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THEOREM 2.5 ([4]). If (V, O) and (W, O) be germs of isolated hyper-
surface singularities at the origin in C™*! defined by weighted homo-
geneous polynomials f and g respectively, then (V,0) and (W, O) are
analytically equivalent if and only if f and g are right equivalent. That
is, there exists a biholomorphism ¢ : (C"*!,0) — (C™*!,O) such that
fop=gy.

THEOREM 2.6 ([3]). Suppose that V = {(zg,...,2.) € C" = f(2,

., zy) =0} and W = {(2,... ,2,) € C"*' : g(2,... ,2,) = O} have
the isolated singular point at the origin. Then the following conditions
are equivalent.

(i): f~g.

(ii): A(f) is isomorphic to A(g) as a C-algebra where A(f) = n11O/(f,
A(f)), A(g) = ..10/(g,A(g)) and (f, A(f)) is the ideal in ., O
generated by f,0f/0z, ... ,0f/0z,.

(iii): B(f) is isomorphic to B(g) as a C-algebra where B(f) =n10/(/f,
mA(f)), B(g)= »+10/(g,mA(g)) and (f,mA(f)) is the ideal in
2410 generated by f and 2,0f/0z; for all 4,7 =0,1,... ,n.

THEOREM 2.7 ([5]). Suppose that f(z, 21, 22) and g(z, 21, 22) are weig-
hted homogeneous polynomials with the same weights (wp, w1, ws). If f
and g have isolated singularities at the origin in C3, then f is topologi-
cally equivalent to g.

THEOREM 2.8 ([5]). Let (V,0) and (W,0) be two isolated quasiho-
mogeneous surface singularities having the same topological type. Then
(V,0) is connected to (W, 0) by a family of constant topological type. In
fact (V,0) is connected to one of the followings:

Class . V(ag,a;,a2;1) = {25° + 2[* + 25 = 0}

Class II.  V(ag, a1, a9;2) = {25° + 2{' + z125* = 0} where a; > 0
Class III.  V(ag, a1, az; 3) = {2§°+ 27 2o+ 2125? =0} where a;>0,a2>0
Class IV. V/(ag,a1,as;4) = {2§° + 2}z + 2925 = 0} where ag > 0

Class V. V(ag,a1,a9;5) = {2021 + 2} 22 + 2025* = 0}

Class VI V(ag, ay,ag;6) = {280 + 228 + 2522 = 0} where

(ao — 1)(a1b2 + a2b1) = QpQa1Qa9
Class VIL  V(ag,a1,a2;7) = {28021 + 223" + 225? + 23' 22 = 0} where
c(ap — 1)(a1by + azby) = as(agar — 1)

THEOREM 2.9 ([1]). Let f and g be weighted homogeneous polyno-
mials, which are not homogeneous, with isolated singularity at the origin
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in C? such that f + 22+2% and g # 22+2%. Then we may assume without
loss of generality that analytically,

[ =z'21fi with
fi =+ 28+ 5] AR and
g =202 with
g =7+ A4+ T B
where
(a): 2<n<k,d=ged(n, k) withn = dn; and k = dk;,
(b): 2<m < l,e=ged(m,l) withm = em; and | = el,,
(c): €1,€9,01, 02 are either 1 or 0, respectively, and
(d): A; and B; are complex numbers for 1 <i<d-1land1<j<
e—1.
Also, we need to assume without loss of generality that
if ged(n,k)=n, ie, ny =1, then A; =0 and
if ged(m,l)=m, ie, my=1, then B;=0.
As a conclusion, we get the following:
f=gifandonly ife; = §; fori = 1,2 and f; = ¢, if and only if
€;=90; fori =1,2 and n = m,k =l and there is a complex number p
with p? = 1 such that A;p' = B; fori=1,... ,d— 1.

THEOREM 2.10 ([2]). Let f =20 + 20 + 35 a;z42} ' and g = 2§ +
zf-I-Z;:l b;z}z; be homogeneous polynomials with isolated singularity
at the origin in C® wheren > 2s+3,n > 2t +3 and n > 5. Then
f = g if and only if there is a complex number p with p® = 1 such that
b; = a;pf fori = 1,...,s = t. Moreover, if f = z§ + 2§ + azy2} and
g = 24 + 2} + bzp2? have an isolated singularity at the origin, then f ~ g
if and only if a* = b*.

3. Main Results

We find a concrete criterion to have the same analytic type for given
two surfaces singularities at the origin, which are defined by some weighted
homogeneous polynomials. Consider the four different types of singular-
ities defined by some weighted homogeneous polynomials with isolated
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singular points at the origin in C3, which are topologically equivalent to
the type 2 + 2F + 2} = 0, as follows:

To(20, 21, 22) = 25 + 28 + 2);

T\(20,21,22) = 2§+ 2f + zb + doas Aa,ﬂzng with some A, g # 0;
To(20,21,22) = 25 + 25 + 24 + > 5 Bre2]2) with some B, ; # 0;
Ty(20,21,22) = 25+ 20 + 2+ Y., Cer262]  with some C., # 0;

Ti(z,21,2%) = #+25+24+3 om D220 with some Do, 0.

DEFINITION 3.1. It is said that a weighted homogeneous polynomial
f belongs to the type T; if f can be written in the form of T} for i =
0,1,2,3,4. In this case, we write f € T;. Otherwise, f ¢ T;.

Note that the surface singularities defined by the above four different
types of weighted homogeneous polynomials are topologically equivalent
to the surface singularity defined by 23 + 2¥ + 2} = 0. It is a consequence
of Theorem 2.7 ([5]). But, for the analytic case, we find the different
results. Those are followings:

First, even though f and g belong to the same type in a sense Def-
inition 3.1, f and g may not be analytically equivalent. If f and g are
analytically equivalent, then we find a necessary and sufficient condition
for f and g, in an elementary way. Secondly, if f and g belong to the
different types, then f and g are not analytically equivalent.

Throughout in this paper, we assume that 2 < n < k < [ and all
exponents of 2, z; and 2, are positive integers.

THEOREM 3.2. Let n and k be positive integers with 2 < n < k and
Heh,geT.
A: Assume that n < k. Then, f; and ¢; can be written analytically

as follows:
) fr =24 Aozt + 2+ ) A,

g = z(’)’ + B()Z{C + Zé + E;j;ll Bizg”zf’(d_’)

where d = ged(n, k) with n = n;d and k = k,d for some positive
integers ny, ky, and A; and B; are complex numbers for0 < i < d—1
which satisfy the following properties:
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(a): Ifd <n, then Ay =By =1;

(b): I'fd =n > 3, then Ag1 = By_1 = 0, and Ay and By are
either 1 or 0, respectively. In this case, if Ay = 0, then A; =1,
and if By =0, then B; = 1;

(¢): Ifd=n=2, then Ay=By=1and A; = B; =0;

(d): f1 =~ g1 if and only if there exists a complex number w; with
w} = 1 such that At = B; for 0 <i <d— 1.

B: Assume that n = k. Then f, and g, can be written analytically
as follows:

i =4 +24+ z2 + Zz y Cizg2l ™,
g =4+ R+ A +Y Dizir

(2)

for some complex numbers C; and D; where s <n —1,t <n-—1
and C; # 0,D; # 0. In this case, let n > 25+ 3,n > 2t + 3 and
n > 5. Then, fi ~ g if and only if exits a complex number w;
with w} = 1 such that wiC; = D; foreachi=1,2,... ,s=1t.

THEOREM 3.3. Let k and ! be positive integers with 2 < k <! and
fo €292 €To.

A: Assume that k < l. Then f; and g; can be written analytically as
follows:

fo =28 +2F+ A2k + Ed LAz l‘(d—’),

3
() g2 *20+21+Boz2+2d 1B k:z ll(d 1)

where d = ged(k,l) with k = kid and | = [,d for some positive
integers ky, 1, and A; and B; are complex numbers for 0 <i < d—1
which satisfy the following properties:

(a): Ifd < k, then Ay = By = 1;

(b): Ifd = k > 3, then Ay_y = By_1 = 0, and Ay and By are
either 1 or 0, respectively. In this case, if Ay =0, then A; =1,
and if By = 0, then B, = 1;

(C)Z Ifd=k‘:2, tbenAOZB():laI]dA]:B]:O;

(d): fo = go if and only if there exists a complex number p, with
Pt =1 such that A;p} = B; for 0 <i<d—1.

B: Assume that k = {. Then f; and g» can be written analytically as
follows:

— k k 5 k—
fo =20+ +2 +Z%=102322 Z;
g =25+ Zf + z§ + Ziz—-l 125 :

(4)
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for some complex numbers C; and D; where s < k—1,t <k —1
and C; # 0,D; # 0. In this case, let k > 25+ 3,k > 2t + 3 and
k > 5. Then, f; = g, if and only if there exists a complex number
p2 with p§ =1 such that Cip = D; fori =1,2,... ,s=t.

THEOREM 3.4. Let n and | be positive integers with 2 < n < | and
f3€T5,95 €T

A: Assume that n < I. Then f, and g; can be written analytically
as follows:

_ k ! d—1 i b(d—1)
fs =284+ 28 + Apzh + 30| AizpVz, ,

(5) g3 = Z()L + Z{c + B()Zé + Zf.—jll B,-zglizél(d—z)
where d = ged(n,l) with n = nid and | = l,d for some positive
integersny, li, and A; and B; are complex numbers for 0 < i < d—1
which satisfy the following properties:
(a): Ifd < n, then Ay = By = 1;
(b): Ifd =n > 3, then A;_; = By_; = 0, and Ay and B, are
either 1 or 0, respectively. In this case, if Ag = 0, then A, = 1,
and if By =0, then B, = 1;
(c): Ifd=n=2,then Ay=By=1and A; = B, =0;
(d): fs = g3 if and only if there exists a complex number 1, with
Nt =1 such that Ayt = B; for0<i<d~—1.
B: Assume that n =l. Then f; and g3 can be written analytically as
follows:

(6)

— s i N1
fs =z3+27+25+ Z%‘=1 Cizpzy ™,
g3 =20+ 24+ 4y Dzt

for some complex numbers C; and D; where s <n—1,t <n—1
and C; # 0,D, # 0. In this case, let n > 25+ 3,n > 2t + 3 and
n > 5. Then, f3 = g3 if and only if exits a complex number 1, with
ns = 1 such that Cyny = D; for eachi=1,2,... ,s =t.

REMARK 3.5. Theorem 3.2, Theorem 3.3 and Theorem 3.4 imply the
following facts:

(1) If feliand n = 2, then f, € Ty;

(ii): If fo € Ty and n = k =2, then f, € Tp;
(iii): If fs € T3 and n = 2, then.f; € Ty.
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THEOREM 3.6. Suppose that 2 < n < k < ! and that the weighted
homogeneous polynomials f; and g; belong to the type T; and Tj, re-
spectively, where 0 <1 < j < 4. Ifi # j, then f; # g; except for i = 2
and j =4.

Assume that f, belongs to the type Ty. That is, fs can be written as

fa= g+ 2 +2+ Y Dapr24 7.
By

DEFINITION 3.7. Let f = 23 + 28+ 20+ Yoapy D aﬂﬂngsz be given.

Define min(f) = min{a + 3 + v} for all nonzero monomial 2§ P2 in g

and S(f) = {(e, 8,7) : @+ B+~ = min(f)}.

LEMMA 3.8. Ifk < I, then there exists a unique element (ay, B, Y0) €
S(f) such that ag < a for any (o, 3,7) € S(f) as in Definition 3.7.

Proof. Note that if oy = a and a9 + fo + v = a + 8+, then
bo=B 1=
k [ -
Thus By = B and vy = «v if k < I. Therefore if we choose an element
(a9, Bo, Y0) € S such that ap < « for any (@, B,7) € S, then the element

ag, Po, Yo) is unique. ]
(0, Bos Y0) q

THEOREM 3.9. Suppose that 2 < n < k < | and that f; and g4
belong to the type of Ty. Then f; and g4 can be written as follows:

8.
fi= B+ +z2+2(aﬁ7€I4Daﬂ’YZ0zle7
6

9= 2+ 2+ 4+ Y wpyen Dopy? 4 3.
for some nonzero complex numbers D, g, and Dy g .y. For f4, if we can
choose (g, Bo,Y0) € Is with ag + By + v < m + k — 2 which satisfies
Definition 3.7 and Lemma 3.8, then the followings hold:

(1): fa % fo where f, € Ty;
(ii): If (ag, Bo, 0) € I}, then f, % g4

Furthermore, if fy = g4, then (o, Bo,Y0) € I; and there exist complex

apforrn — [
numbers a, b and c such that Dy, g, ,,a*°0%c® = Dl, 5 .



Analytic types of the surface singularities 899

We prove those results by using Theorem 2.5, Theorem 2.9 and Theo-
rem 2.10. From the fact by Theorem 2.5, which two surface singularities
at the origin defined by weighted homogeneous polynomials f and g are
analytically equivalent if and only if fo¢ = g for some biholomorphisms
¢ : (C3,0) — (C3 0) at the origin, we may apply the fact to prove
those results.

We use a notation to be convenient:

282°2] € P(2y, 21, 2) if the monomial 232° 2] belongs to the polynomial
or power series P(z, z1,22). That is, the monomial zng 2] has nonzero
coefficient in P(z, 21, 22).

Before proving Theorem 3.2, Theorem 3.3 and Theorem 3.4, we re-
marked the followings: Let (X,0) = {(20,- - ,2a) : f(20, - ,2n) = 0}.
Teissier(1977) showed that the analytic type of the hypersurface Xy,
defined by f(zo,- - ,2,) +h(wy,: - ,w,) = 0 depends not only on the
analytic types of (X, 0) and of (X,,0), but also in general on the choice
of the equations for f and h. However, the following theorem says that
in case h is quasihomogeneous, then the analytic type of X, indeed
depends only on the analytic types of (X;,0) and of (X},0). In fact, a
“subtraction” theorem holds !

THEOREM 3.10. Let f(z,---,2,) and g(zo,--- ,2,) be holomorphic
functions with isolated singularity at origin in C**! and h(wy, - - , wy,)
be a quasihomogeneous holomorphic function with an isolated singular-
ity at the origin. Then (Xjy,0) is analytically equivalent to (X,,0) if and
only if (Xyn,0) is analytically equivalent to (Xgi4,0).

Proof. See [6]. (i

Proof of Theorem 3.2. If ged(n, k) = d < n, then f; and g; can be
written analytically as (1) which satisfy (a). Suppose that ged(n, k) = n.
Then,

n-1
=2+ +2+ Z D,z
i=1
for some complex numbers D;,1 <i<n-—1. If D,_; =0, then f; can
be written analytically as (1). If D,_; # 0, then, by the biholomorphic
change of coordinates ¢ with

— Dyy ky
@(20,21,22) — Zy — n 21 y 215 22
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at the origin, (f; o ¢)(20, 21, 22) can be written analytically as (1) which
satisfies (b) and (c). Since f; 0 ¢ & fi, fi can be written analytically as
(1) which satisfies (b) and (c). By a similar method, g; can be written
analytically as (1) which satisfies (a), (b) and (c). Let k(22) = z5. Then
h is a quasihomogeneous holomorphic function. Let f = f; — h and
g = g1 — h. By Theorem 3.10,

fi=f+hxg+h=g ifandonlyif f=g.
This is the case of plane curve singularities. The result of Theorem 2.9

implies A. The proof of B is similar if we set h(z) = 25.
This completes the proof of Theorem 3.2. a

Proofs of Theorem 3.3 and Theorem 3.4. By a similar argument of
the proof of Theorem 3.2, we can prove Theorem 3.3 and Theorem 3.4
without any difficulty. a

We prove Theorem 3.6 by Proposition 3.11, Proposition 3.12 and
Proposition 3.13.

PROPOSITION 3.11. Assume that 2 < n < k < | and that fy € Ty
and f; € T; for 1 < j < 4 in a sense of Definition 3.1. Then fo # f;.

Proof. We prove that fo % f1. Suppose that fy =~ fi. Then f; and fi
can be written, analytically as
fo =7+ +2,
fi =8 A+ B+ Yo AasB,
which are weighted homogeneous polynomials with weights (n, k,1). Let

fla,21) =28 + 28 + 3,5 AapZ 2,
h(ZQ) = Zé.
Then f and g are weighted homogeneous polynomials with weights (n, k)
and h is a quasihomogeneous holomorphic function. By Theorem 3.10,
fo=g+h= f+h= fiifand only if f =~ g. But, f % g by Theorem 2.9.
This leads to a contradiction. Thus fy % fi.
The other proofs are similar to the above. g

PROPOSITION 3.12. Suppose that 2 < n < k < ! and that f; € Ty
and f; € T; for 0 < j < 4,5 # 1 in a sense of Definition 3.1. Then

fi % f;
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Proof. Suppose that f, ~ f; for some j with j #1 and 0 < j < 4.
Case I) ged(n, k) = d; < n.

Then n = nid; and k = kd; for some positive integers k; and n,.
Note that d; > 1. By Theorem 3.2, A, f; can be written analytically as

d
=g+ 2+ 2+ ) Agpipa=d
i=1
for some complex numbers A; where d is the largest number of i with
A; #0and 1 <4 < d; — 1. Choose a biholomorphism ¢ : (C3,0) —
(C%,0) at the origin O = (0,0,0) such that f; o ¢ = fi- We set
(20, 21,22) = (H, L, M) as follows:
(7)
H=ay20+byz1+c120+Hy+- - -+ H+- - - | H=) "\ oirs Aparzb 125,
L=aszo+byzy+cozp+ Lo+ -+ Ly+--- , L,=Y B, 22123,

T &tptgtr=s

M=a3Z0+b321 +c3zo+ Mo+ - - +M+-- . Ms=Zp+q+r=s Cp,q,rzgzgzg-
Since ¢ is a biholomorphism at the origin, we have

ay b1 Cy
(8) ' qu(O) ,Z det 5] b2 Ca 75 0.
as b3 C3

Consider the expansion of f; 0 ¢ = f;,

(9) H'+ LF+ M'+ zd: AHM G =
i=1
Note that
n<md+ki(d~d) <ny(d—1)+k(d ~d+1)
<coe<ng+ki(d - 1) < k.
Then, by comparison of degrees in (9), we have
h=c=c=0
and
Hy =+ = Hpyn))a-a) = 0.
Therefore
| Jo(O) |= arbyes # 0.



902 Seungpil Kang

In the expansion

AdHnldel (d1—d)

= Ay (a120+H(k1_n1)(d1_d)+1+' .. )nld(a2Z0+b2Z1+L2 + -
every monomial with degree n;d-+k;(d; —d) is contained in the expansion
of Ag(a120)™%(ag2p+by2; )1 4~9) . In particular, the monomial P k1(di-d)
has nonzero coefficient Adalldb’cl (4-4) in the expansion of A4H "‘de'(dl -,

It is clear that the monomial 23"%2; k(414 J5es not belong to L¥ and M’
by the inequalities

)kl(dl-d)

)

nld kl (d1—d

We claim that the monomial z; ) does not belong to the expan-

sion of H". If z* k‘(d‘ 9 belongs to H", then the monomial is con-
tained in the expanswn of (@120)"(H(ky~ny)(di-dy+1 + -+ - )" for some 7
where 0 < < myd. Since n > nid + 2 and n1d + ki(dy — d) > n, the
inequalities
n + (n—n) {(ky — m)(dy — d) + 1}
> nd+ kl(dl — d)

hold for all » where 0 < 1 < md. That is to say, every monomial
in the expansion of (a120)"(Hk—n,)d-d)+1 + - -+ )"~ " has degree greater
than nid + ky(dy — d) if 0 < 7 < nid. This leads to a contradiction.

k di—d
md Jdi=d) oo nonzero coefficient Ada"‘d

Consequently, the monomial z;
bg‘(d‘ in the left expansion of (9) and it must belong to f; for 0 < j <
4,7 # 1. This also leads to a contradiction. Thus f; # f; if j # 1.
Case II) ged(n, k) =n < k.

Then k = nk, for some positive integer k;. By Theorem 3.2, A, fi
has analytically two different representations as follows:

(11) fn =g +a+2+30 Alzzozkl(n )
fia =22 +2 +E, 1 A 252y L)

for some complex numbers A;;, Az, with 1 <i<a<n-21<r<
B <n—2Ay; =1, where o and f are the largest numbers of ¢ and r
such that A,; # 0 and A;, # 0, respectively. Therefore, if f; ~ f;, then
either fll ~ f] or f12 ~ fJ

Suppose that fi; =~ f;. Choose a biholomorpism ¢ : (C* 0) —
(C3,0) at the origin as (7) such that fi; o ¢ = f;. By a similar method
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in the proof of Case I, the monomial 282" has nonzero coefficient

A1 2585 in the expansion of fi; 0 ¢. Thus the monomial 2gz""

must belong to f;. This leads to a contradiction. Thus fi; % f;.
Similarly, we have fi; % f;.

Consequently, f; % f;.
This completes the proof. a

PROPOSITION 3.13. Suppose that 2 < n < k <l and that f; € T3
and f; € T; for j = 0,2,4 in a sense of Definition 3.1. Then f; % f;.

Proof. Suppose that f; =~ f; for some j = 0,2,4.
Case I) ged(n,l) = ds < n.

Then n = nsd3 and [ = lzd; for some positive integers nz and l3.
Note that d3 > 1. By Theorem 3.4, A, f3 can be written analytically as
follows:

d
(12) fi=2+25+ 25+ Z E; 200t (%0
i=1
for some complex numbers F;, where d is the largest number of ¢ with
E; #0and 1 <i < d3z—1. Take a biholomorphism ¢ : (C3,0) — (C3,0)
at the origin O = (0,0,0) such that f3 0 ¢ = f; as (7). Note that
n < n3d+lg(d3 - d) <n3(d——1)+l3(d3-d+1) <o < n3+13(d3—d) <.

By a similar method in the proof of Proposition 3.12, we have b; = c¢; =0
in (7). Therefore, we may write H as
H= a12y + Hmin{k—n+1,n3d+13(d3—d)—n+1} RRRE
Note that
(13) (TL — ’I’Lgd)(ngd + l3(d3 — d) —n+ 1) > l3(d3 — d),
n(ngd + l3(d3 - d) -n+ 1) > 1.

Using the above inequalities (13), we have

n-min{k —n+ 1,n3d + l3(ds —d) —n+ 1} >k,

(14) ngd - min{k — n + 1, ngd + lo(ds — d) —n + 1} > L.

So, we have ¢ = 0 and L = agzg + bezy + Lo + -+ in (7). Since p is a
biholomorphism at the origin,
| Jw(O) IZ a1b203 7é 0.

We consider two subcases (Ia) and (Ib) of Case I.
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(Ia) n < nsd + lg(d3 — d) <k.
Then we may write H as

H = a120 + Hpyarty(ds-d)-ns1+ - -
In the expansion of

EdHn3dMl3(d3—d)
= Ey(120+ Hnyarty(ds—a)-nt1++ - )™ (@szotbazrteszat- Mot - - )la(ds—d)

in f3 o ¢, every monomial with degree nsd + l3(ds — d) is contained in
the expansion of Ey(a,120)™?(aszo + b3z + c323)"%~% only. In particular,
the monomial 233‘12123('13—'1) has nonzero coefficient Eda’lwdc_{f(d"’"d) in the
expansion of EyH™Mb(d=d),

We claim that the monomial zgadz?(ds_d) does not belong to H™. If
zg3dz§(d3_d) € H", then the monomial is contained in the expansion of
(a120)"(Hnydt13(ds—d)—n+1 ++ -+ )" " for some 7 where 0 < 7 < nzd. By the
inequalities

n+(n—n) (nad+l(ds—d)—n+1)
(15) > ngd + (n — n3d)(nzd + l3(dz — d) —n + 1)
> ngd + lg(dg - d),

every monomial in the expansion of (@120)"(Hnydtis(ds—d)-n+1 + =+ e
has degree greater than nzd + l3(d; — d) if 0 <n < nad. Tt is impossible
if 26‘3‘12;3('13_'1) belongs to H™.

Since L = agzg + bazy + Lo + -+ and na3d + I3(ds — d) < k < [, the
monomial zgadzés(drd) does not belong to LF and M!. That is to say,
the monomial z{,‘zdzé“(ds_d) has nonzero coefficient Eda’1‘3dcl33(d3_d) in the
expansion of f3 o ¢ and it must belong to f; for some j = 0, 2,4. This
leads to a contradiction.

(Ib) k <nsd+ lg(dg — d)
In this case, H can be written as

H=a120+Hk_n+1+"' .

In the expansion of f3 o ¢, every monomial with degree k is contained
in the expansions of (agzp + bgz1)* in L* and (a120)" 'Hj—p41 in H"
only. Since n > n3d + 2 > 3, the monomial 202¥~1 does not belong
to (a120)" 'Hy_ns1. This says that a; = 0. Note that the following

assertion.
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ASSERTION. If s < min{n — 1,n3d + l3(ds — d) — k + 1} = e, then
L, = 0 and Hy_,.s = 0. That is to say, H and L can be written as
follows:

H =az+Hipet -,
(16) L :b221+Le+..._

Proof of Assertion. 1t is obvious that Hy_n41 = 0. In the expansion of
f30, every monomial with degree k-1 is contained in the expansions of
zg’lHk_nH in H™ and z{“‘ng in L* only. Thus Hy_n2 = Lo =01if 2 <
min{n—1, ngd+l3(dz—d)—k+1}. If min{n—1, nad+ls(ds—d)—k+1} = 3,
we are done. If not, i.e., min{n—1,nzd+I3(ds—d)—k+1} > 3, then every
monomial with degree k+ 2 is contained in the expansions of z()‘"lH k—nt3
in H" and 2¥"'Lg in L* only in f3 0. Thus we have Hy_n3 = L3 =0
if min{n — 1,n3d + l3(ds — d) — k + 1} > 3. Continuing this process, we
have the above assertion.

We claim that the monomial z33"z§3(d3'd) does not belong to H” and
L* by using the assertion. Consider two subcases of the case (Ib).

(Ib-1) ngd + l3(dz —d) —k+1<n -1
In this case, H and L can be written as follows:

H =a120 + Hyaqt5-d)-n+1 T s

17
(17) L =byzy + Lnyaqtzds—d)—k+1 T -

If the monomial z33dzé3(d3_d) belongs to H™, then the monomial zpd

zl;(d"_d) belongs to (a120)"(Hgdrigds—d)-n+1 + - -+ )" for some n where
0 < 1 < nad. The inequality (15) implies that every monomial in the
expansion of (a120)"(Hugdtis(ds—d)-ntt + - -+ )" 7 has degree greater than
nsd + I3(ds — d) if 0 < 7 < nad. This leads to a contradiction.

nad l3(d3
)

Similarly, we have z; -4 ¢ L* by using the inequality

k(’ngd + l3(d3 - d) —k+ 1) > n3d + l3(d3 — d)

(Ib-Il) n — 1 < ngd + I3(ds —d) —k + 1.
In this case, we claim that H and L can be written as follows:

H =2P + 21Q1 + Hngdity(dg-d)—ns1+ 7

18
(18) L = 2P+ 21Q2 + Lyyariyds—a)—k+1 T
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for some polynomials P;, @, with degrees less than ngd+I3(ds—d)—n+1
and P, (J; with degrees less than nzd + l3(d; — d) — k + 1. Note that

H =azxn+He+---,

(19) L :b2zl+Ln_l+... .

Since n — 1+ k — 1 < ngd + l3(ds — d), every monomial with degree
k +n — 2 is contained in the expansions of (a;20)" 'H;_; in H™ and
(bz1)*'L,_; in LF in the expansion of f3 o . Since the monomial
zg‘lz§‘1 with coefficient Aggx-1a7"! is not contained in (boz1)* 1L,y
and the monomial 25712571 with coefficient By ,-1b5~" is not contained
in (a129)" ' Hy-1, we have Aggor-1 = Boon-1 = 0. That is to say, £~ ¢
Hy_yand 2571 ¢ L, ;. If ngd + l3(ds3 —d) = k+n — 1, we are done. If
not, i.e., ngd + l3(ds — d) > k + n — 1, continue this process. In H", we
claim that the monomial z;~'2f with degree k + n — 1 is contained in
(a120)" ! Hy only. In the expansion

H" =(a1z0+ Hya+ Hp+ )"
= Z:;L:O nC’,,(alzo + Hk_l)n'.n(Hk R )77’
we have 2J 7125 ¢ (ay20 + Hy_1)" "(Hp +---)" if n =0 or > 1. Thus
z{,“lz§ € (042!0 + Hk—l)n_l(Hk + - )

if 27'2f € H™. In particular, 2§ 125 € (a12)" 'Hy only. Since the
monomial z}~'2f does not belong to L¥, M! and H™4M"(®%~4) if ngd +
l3(d; — d) > k + n — 1, the monomial 2'2¥ has coefficient nAggza?"
in the expansion of f3o . Thus Agox = 0.

Similarly, we can show that the monomial 2§23 is contained in the
expansion of L* only and has coefficient kBoyo,nb’zc'1 in the expansion of
faop. Thus Byg, = 0. That is, 2§ ¢ Hj, and 23 ¢ L,. Continue this
process. Then we have the following facts:

(20) Aooji-1 = Aopk = = Ao nsdtiy(ds—d)-n = 0,
Bopn-1 = Bopon = -+ = Bopnydtis(ds—a)-k = 0

This says that (18) holds. Using the facts (20), we prove that zg‘"‘dzéa(d"‘d)
does not belong to H™ and L. If z{f“dz?(drd) € H", then

522%™ € (2P + 21Q1)" " (Hngdsta(dsmd)—nir + )"

for some n where 0 < 7 < n. If either n = 0 or n > 1, then
32540 ¢ (20 Py + 21Q0)" " Hnarty(ds-aynsr + ),
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since 234 25(%~ Y ¢ (2P + Q)" and
n—n+ T](’I’Lgd+ l3(d3 - d) —n+ 1) > 'n,gd + l3(d3 — d),
if n > 1. Thus, if 2z bds=d) & g then

!
zg3d223(d3 € (nP1 +21Q1)"" (H nad+Ha(ds—d)-n+1+ -

But it is impossible, since ngd < n — 1.
Similarly, we can prove that if 25*z; b(d=d) ¢ [k then

n. d3—d -
Zosdléa( =) ¢ (20Ps + 21Q2)* N (Lngaiy(ds—d)-k+1 +* *)-

But it is also impossible, since ngd < k — 1. Thus z(')“‘dz?(ds_d) does not
belong to the expansions of H™ and LF in this case.

Consequently, z0%¢2 13(d3 9 Jdoes not belong to H™ and L* at any case.
Furthermore, the monom1a1 2z 24 5(4-9) Joes not belong to M!, since
nad + l3(d3 d) <.

These show that the monomial z;
Eja7 ?(ds %) in the expansion of f30 . But the monomial z;
does not belong to f; for j = 0,2,4. This leads to a contradlctlon
Case II) ged(n,l) =n < 1.

Then [ = nls for some positive integer l3. By Theorem 3.4, A, f3 has
analytically two different representations as follows:

ls(ds—d )
nad 3( 5=4) has nonzero coefficient

n3d ls(da—d)

fao =28+ +2+50 1Elzz(')zl“(" ’),
f2 =2z +"’1 +Zr 1 Borzyzy P

for some complex numbers E;; and E,,, where o is the largest number
of i with E;; # 0 and (8 is the largest number of r with E;, #£ 0 for
1 <i,7 <n—2. Therefore, if f3 = f;, then either f3 ~ f; or fz = f;.

Suppose that f3; ~ f;. Then there is a biholomorphism ¢ : (C3,0) —
(C3,0) at the origin as (7) such that f3 o ¢ = f;. Note that

n<a+lin—a)<a—-1+hn—a+l)<---<1l+ln-1) <l

As in the proof of Case I, the monomial 282" has nonzero coefficient

E, a8 il %) in the expansion of fi; o ¢. But the monomial z§ o Zlaln= )

does not belong to f; for j = 0,2.4. This leads to a contradiction.
Similarly, suppose that fs = f; and ¢ : (C3,0) — (C3, O) are chosen

as (7) so that f3 o ¢ = f;. Then the monomial 22z 5"P) has nonzero
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coefficient Ej 522c5" ) |

222" does not belong to f;- This also leads to a contradiction.
Consequently, we show that neither f35; ~ f; nor f; ~ f;. Thus
fs# £
By Case I and Case I1, f; % f; at any case.

This completes the proof. O

in the expansion of f3 o ¢. But the monomial

Proof of Theorem 3.6. Proposition 3.11, Proposition 3.12 and Propo-
sition 3.13 imply Theorem 3.6. |

Proof of Theorem 3.9. Suppose that f; = f,. Choose a biholomor-
phism ¢ : (C%,0) — (C3,0) at the origin O = (0,0,0) as (7) so that
faop=f.

Claim that the monomial 5%z} has nonzero coefficient Doy 0,7007°
bg"cg" for some complex numbers a1, b, and c3 in the expansion of f4o .
To prove the claim, it is enough to consider two cases: ag+ Gy + 70 < k
andk <o+ G+ <k+n—2
Casel) ap+Go+7n<k

In this case, we may write H as follows:

H= arzp + Hao+ﬁo+"/o—n+1 Foee

by the similar method as in the proof of Proposition 3.13. Consider the
expansion of f4 o ¢ as follows:

(21)
H+ LF + M+ 32 5 et Do HOLPM?
= (@120 + Hog4fyro—n+1 + -+ - )" + (@220 + bozy + cpz1 + Lo+ - - - )F
+(a320 + b3Z1 + Cc329 + M2 + .- )l + E(a,ﬁ,’y)&h Da,ﬂﬁ(alzo—k
Hao+ﬁo+'yo—n+1 + - )"‘(agzl +bozy +cozg + Lo+ - - - )ﬂ(a3z0+
b321 + c329 + M2 + .- )'y‘

Note that the monomial 25 does not belong to the expansions of H™, M*
and Dy, g, H**LAM™ by the inequalities n(ay + By + y0 — n + 1)
k,ao(ao +680+v%—n+1)+ 06 +v% > kand ! > k. These show
that z§ € L* only in the expansion of (21) and the monomial 2§ has
coefficient c§. Since the monomial z¥ does not belong to f(z, 21, 22) we
have c; = 0. Thus | J,(O) |= a1bc3 # 0.

We claim that z(‘,’°z1ﬁ°z;° has nonzero coefficient Dy, 4,,a3°05°cP in the

expansion of (21). By the inequalities ap+(n—ao)(ao+ B+ —n+1) >



Analytic types of the surface singularities 909

ag+ Bo+70 and I > ag+ B+, the monomial 2y z1 z;° does not belong
to the expansions of H” and M. If k > ag+ B+ 7, then zo"zf"zg" ¢ LF
is clear. If k = ag + By + o, then z3°2 f 923° ¢ LF, since every monomial
with degree k = ag+ 5o+ is contained in the expansion of (ayzp-+bez1)*
in L*, and the monomial z(‘,""zf‘) 23’ does not belong to the expansion of
((1220 + bzzl)k.

Consequently, the monomial 2y’ 02522 belongs to Dau,ﬂo o HOLAM™
only in the expansion of (21) Thus the monomial 22°2%2)° has nonzero

coefficient Dqy gy,81 a%b2 ¢l in the expansion of fy0 ¢.

Case II) k<ag+fot+r<k+n-2
In this case, we may write H as follows:

H=ayz+ Hgny1+ -+

In the expansion of f; 0 ¢, every monomial with degree k is contained
in the expansions of n(a;20)" ! Hy—n+1 in H™ and (a220 + boz1 + CQZQ) 1n
L only. Note that n > a+ 2 > 3. Since the monomials zoz{c and 2%
do not belong to the expansion of n(a;2)" ! Hy—n4+1 and fo(2, 21, 22), We
have ay = ¢y = 0. This follows

L—_—b2zl+L2+...

By the Assertion in the proof of Proposition 3.13, H and L can be
written as follows:

H = 12y + Hao+ﬂo+’yo—n+l ey,
L =byzy + Logtfytrmp—k+1+ -

Thus the monomial 230272 does not belong to the expansions of H"

and L* by the inequalities g+ (n—ap)(ao+Go+v—n+1) > ao+L+7
and By + (k — Bo) (o + o + Y0 — k + 1) > oo 4 Bo + Y0, since n > ap + 2
and k > 3 + 2. It is clear that the monomial 23°2% 52° does not belong
to M*, since | > ag + Bo + Yo-

Consequently, the monomial zj z'f"z2 is contained in the expansion
of Dao,ﬂo v H®OLAM™ only in the expansion of f; o cp Thus the mono-
mial z 02723 has nonzero coefficient Diyg,5,705 a*b0c} and must belong
to fa(20, 21, z2). This says that fy # f2 if (o, ﬁ, ) ié (o/,8,7'). In par-
ticular, if f4 & g4, then (ag, Bo,Y0) belongs to I} a.nd there exist complex
numbers ay, by and c3 such that Doy g487°03°¢3° = Dl g0 vo-

This completes the proof of Theorem 3.9. O
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