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Abstract. In this note, we present some inequalities for the norm and numerical radius

of 2-homogeneous polynomials from the 2-dimensional real space l2p, (1 < p < ∞) to itself

in terms of their coefficients. We also give an upper bound for n(k)(l2p), (k = 2, 3, · · · ).

1. Introduction

In this paper, we consider only real Banach spaces. Given a Banach space E
we write BE for its unit ball and SE for its unit sphere. The dual space of E is
denoted by E∗ and let

Π(E) = {(x, x∗) : x ∈ SE , x∗ ∈ SE∗ , x
∗(x) = 1}.

A mapping P : E → E is called a (continuous) k-homogeneous polynomial
if there is a (continuous) k-linear mapping A : E × · · · × E → E such that
P (x) = A(x, · · · , x) for every x ∈ E. Let P(kE : E) denote the Banach space
of all k-homogeneous polynomials from E to itself, endowed with the polynomial
norm ‖P‖ = supx∈BE

‖P (x)‖. We refer to the book [5] by Dineen for background
on polynomials. It is natural to generalize the concepts of numerical range and
numerical radius of linear operators to homogeneous polynomials. The numerical
range of P ∈ P(kE : E) is defined to be the set of scalars

V (P ) := {x∗(Px) : (x, x∗) ∈ Π(E)}

and the numerical radius of P is defined by

v(P ) := sup {|λ| : λ ∈ V (P )}.

Clearly, v(·) is a semi-norm on P(kE : E), and v(P ) ≤ ‖P‖ for every P ∈ P(kE : E).
It was shown by B. Glickfeld [9] (and essentially by H. Bohnenblust and S. Karlin

[3]) that if E is a complex Banach space, then
1
e
‖T‖ ≤ v(T ) for every T ∈ B(E) =
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P(1E : E), so that for complex spaces v(·) is always a norm and it is equivalent to
the operator norm ‖ · ‖. An extension of Glickfeld’s result for linear operators was
given by L. Harris ([11], Theorem 1): for complex Banach spaces, the numerical
radius is always an equivalent norm in the space of k-homogeneous polynomials. In
real case, it was known that Harris’ result is false.

As in the linear case, the author et al. [4] introduced the concept of the poly-
nomial numerical index of order k of E to be the constant

n(k)(E) := inf{v(P ) : P ∈ P(kE : E), ‖P‖ = 1}

= sup{M ≥ 0 : ‖P‖ ≤ 1
M

v(P ) for all P ∈ P(kE : E)}.

Of course, n(1)(E) coincides with the usual numerical index of the space E.
Note that 0 ≤ n(k)(E) ≤ 1, and n(k)(E) > 0 if and only if v(·) is a norm on
P(kE : E) equivalent to the usual norm. It is obvious that if E1, E2 are isometrically
isomorphic Banach spaces, then n(k)(E1) = n(k)(E2).

The concept of the numerical index was first suggested by G. Lumer in 1968
(see [14]). At that time, it was known that if E is a complex Hilbert space (with
dimE > 1), then n(1)(E) = 1/2 and if it is real, then n(1)(E) = 0. J. Duncan,
C. McGregor, J. Pryce, and A. White [6] determined the range of values of the
numerical index as follows:

{n(1)(E) : E real Banach space} = [0, 1],

{n(1)(E) : E complex Banach space} = [e−1, 1].

C. Finet, M. Martin, and R. Paya [8] studied the values of the numerical index
from the isomorphic point of view. G. Lopez, M. Martin, and R. Paya [15] stud-
ied some real Banach spaces with numerical index 1. In fact, they proved that
an infinite dimensional real Banach space with numerical index 1 satisfying the
Radon-Nikodym property contains l1. M. Martin and R. Paya [17] proved that
if K is a compact Hausdorff space and µ is a positive measure, then the Banach
spaces C(K, X) and L1(µ,X) have the same numerical index as the Banach space
X. Recently, Ed-dari [7] gave a partial answer to the problem of computing the
numerical index of lp-space (1 < p < ∞). In fact, it was shown: Let 1 < p < ∞.
Then n(1)(lp) = limm→∞ n(1)(lmp ) when lp is real or complex. He also proved that
for any positive measure µ, n(1)(Lp(µ)) ≥ n(1)(lp). Recently, the author et al. [4]
introduced and studied the concept of the polynomial numerical index of order k of
a Banach space, generalizing to k-homogeneous polynomials the classical numerical
index. In fact, they proved n(k)(C(K)) = 1 for every k ∈ N and

n(k)(E) ≤ n(k−1)(E) ≤ kk+ 1
k−1

(k − 1)k−1
n(k)(E)

for every Banach space E. It was shown n(k)(E∗∗) ≤ n(k)(E) and that kk/1−k is a
lower bound for n(k)(E) for every Banach space E and it is sharp. Very recently,

the author et al. [13] compute that
1
2

= n(2)(c0) = n(2)(l1) = n(2)(l∞).
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For general information and background on numerical ranges, we refer to the
books by F. Bonsall and J. Duncan ([1], [2]). Further developments in the Hilbert
space may be found in [10]. For recent progress and open questions on the numerical
index of Banach spaces, we refer to the survey articles by M. Martin, and by V.
Kadet, M. Martin and R. Paya ([16], [12]).

In this paper, we present some inequalities for the norm and numerical radius
of 2-homogeneous polynomials from the 2-dimensional real space l2p, (1 < p < ∞)
to itself in terms of their coefficients. We also give an upper bound for n(k)(l2p), (k =
2, 3, · · · ).

2. Main results

Proposition 2.1. Let 1 < p < ∞, 1 =
1
p

+
1
q

and P (x, y) = (a1x
2 + b1y

2 +

c1xy, a2x
2 + b2y

2 + c2xy) ∈ P(2l2p : l2p). Then

‖P‖ ≤ [(|a1|+ |a2|+
1
2
(|c1|+ |c2|))q + (|b1|+ |b2|+

1
2
(|c1|+ |c2|))q]1/q.

Proof. It follows that

‖P‖ = sup
(x,y)∈Sl2p

‖(a1x
2 + b1y

2 + c1xy, a2x
2 + b2y

2 + c2xy)‖p

= sup
(x,y)∈Sl2p

(|a1x
2 + b1y

2 + c1xy|p + |a2x
2 + b2y

2 + c2xy|p)1/p

≤ sup
(x,y)∈Sl2p

|a1x
2 + b1y

2 + c1xy|+ |a2x
2 + b2y

2 + c2xy|

≤ sup
(x,y)∈Sl2p

(|a1|+ |a2|)|x|2 + (|b1|+ |b2|)|y|2 + (|c1|+ |c2|)|x||y|

≤ sup
(x,y)∈Sl2p

(|a1|+ |a2|)|x|2 + (|b1|+ |b2|)|y|2 + (|c1|+ |c2|)
|x|2 + |y|2

2

= sup
(x,y)∈Sl2p

(|a1|+ |a2|+
1
2
(|c1|+ |c2|))|x|2 + (|b1|+ |b2|+

1
2
(|c1|+ |c2|))|y|2

≤ sup
(x,y)∈Sl2p

(|a1|+ |a2|+
1
2
(|c1|+ |c2|))|x|+ (|b1|+ |b2|+

1
2
(|c1|+ |c2|))|y|

= ‖(|a1|+ |a2|+
1
2
(|c1|+ |c2|), |b1|+ |b2|+

1
2
(|c1|+ |c2|))‖q

= [(|a1|+ |a2|+
1
2
(|c1|+ |c2|))q + (|b1|+ |b2|+

1
2
(|c1|+ |c2|))q]1/q.

�
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Note that if P (x, y) = (x2, 0) or P (x, y) = (xy, 0), then the equality of Propo-
sition 2.1 holds.

Proposition 2.2. Let 1 < p < ∞ and P (x, y) = (a1x
2 + b1y

2 + c1xy, a2x
2 + b2y

2 +
c2xy) ∈ P(2l2p : l2p). Then

(a) v(P ) ≥ sup
0≤t≤1

1

4(1 + tp)(1+
1
p )

[(t + tp)|c1 + c2| − t2(|a1 + b2|+ |a2 + b1|)

− (|a1 + b1|+ |a2 + b2|)].

(b) v(P ) ≥ sup
0≤t≤1

(|c1|+ |c2|)tp − (|a1|+ |b1|+ |a2|+ |b2|)
2(1 + tp)(1+

1
p )

.

Proof. Let 0 ≤ t ≤ 1 and ε = ±1. Put y =
e1 + εte2

(1 + tp)
1
p

and y∗ =
e∗1 + εtp−1e∗2

(1 + tp)
1
q

, where

1 =
1
p

+
1
q
. It follows that

v(P ) ≥ |y∗(P (y))|

≥ sup
ε=±1,0≤t≤1

1

(1 + tp)(1+
1
p )
|a1 + εc1t + εa2t

p−1 + c2t
p + εb2t

p+1 + b1t
2|.

Thus

v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|a1 + c1t + a2t

p−1 + c2t
p + b2t

p+1 + b1t
2|

and

v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|a1 − c1t− a2t

p−1 + c2t
p − b2t

p+1 + b1t
2|.

By triangle inequality, we have

(1) v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|a1 + c2t

p + b1t
2|

and

(2) v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|c1t + a2t

p−1 + b2t
p+1|.

Put z =
εte1 + e2

(1 + tp)
1
p

and z∗ =
εtp−1e∗1 + e∗2

(1 + tp)
1
q

. It follows that

v(P ) ≥ |z∗(P (z))|

≥ sup
ε=±1,0≤t≤1

1

(1 + tp)(1+
1
p )
|b1 + εc2t + εb2t

p−1 + c1t
p + εa1t

p+1 + a2t
2|.
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By triangle inequality, we have

(3) v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|b1 + c1t

p + a2t
2|

and

(4) v(P ) ≥ sup
0≤t≤1

1

(1 + tp)(1+
1
p )
|c2t + b2t

p−1 + a1t
p+1|.

The proof of (a): Adding (1), (2), (3), and (4), we get

v(P ) ≥ sup
0≤t≤1

1

4(1 + tp)(1+
1
p )
×

[(tp + t)|c1 + c2| − (|(a1 + b1) + (a2 + b1)t2|+ tp−1|(a2 + b2) + (a1 + b2)t2|)]

≥ sup
0≤t≤1

1

4(1 + tp)(1+
1
p )
×

[(tp + t)|c1 + c2| − (|(a1 + b1) + (a2 + b1)t2|+ |(a2 + b2) + (a1 + b2)t2|)]
(because of tp ≤ 1)

≥ sup
0≤t≤1

1

4(1 + tp)(1+
1
p )
×

[(tp + t)|c1 + c2| − (t2(|a1 + b2|+ |a2 + b1|) + |a1 + b1|+ |a2 + b2|)]
(by triangle inequality)

getting the inequality (a).
The proof of (b): By the inequality (1), we have

v(P ) ≥ sup
0≤t≤1

|a1 + c2t
p + b1t

2|
(1 + tp)(1+

1
p )

(5)

≥ sup
0≤t≤1

|c2|tp − |a1| − |b1|
(1 + tp)(1+

1
p )

.

By the inequality (2), we have

v(P ) ≥ sup
0≤t≤1

|c1t + a2t
p−1 + b2t

p+1|
(1 + tp)(1+

1
p )

(6)

≥ sup
0≤t≤1

|c1|tp − |a2| − |b2|
(1 + tp)(1+

1
p )

.

By the inequality (3), we have

v(P ) ≥ sup
0≤t≤1

|b1 + c1t
p + a2t

2|
(1 + tp)(1+

1
p )

(7)

≥ sup
0≤t≤1

|c1|tp − |a2| − |b1|
(1 + tp)(1+

1
p )

.
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By the inequality (4), we have

v(P ) ≥ sup
0≤t≤1

|c2t + b2t
p−1 + a1t

p+1|
(1 + tp)(1+

1
p )

(8)

≥ sup
0≤t≤1

|c2|tp − |a1| − |b2|
(1 + tp)(1+

1
p )

.

Adding (5), (6), (7) and (8), we get the inequality (b). �

Proposition 2.3. For every k ∈ N and every 1 < p < ∞ we have

n(k)(l2p) ≤ (
p− 1

k + p− 1
)

1
q (

k

k + p− 1
)

k
p ,

where 1 =
1
p

+
1
q
. Then limk→∞ n(k)(l2p) = 0.

Proof. Let P (x1, x2) = (xk
2 , 0) for x = (x1, x2) ∈ l2p. Then P ∈ P(kl2p : l2p) and

‖P‖ = 1. Put f(t) = tp−1 (1− tp)
k
p for 0 ≤ t ≤ 1. It is easy to show that f has its

maximum (
p− 1

k + p− 1
)

1
q (

k

k + p− 1
)

k
p at t = (

p− 1
k + p− 1

)
1
p . It follows that

0 ≤ n(k)(l2p) ≤ v(P )

= sup { | < (y1, y2), P (x1, x2) > | : (y1, y2) ∈ Sl2q
, (x1, x2) ∈ Sl2p

,
2∑

i=1

xiyi = 1 }

= max {|y1| |x2|k : 1 = |x1|p + |x2|p = |y1|q + |y2|q = x1y1 + x2y2 }
= max {|y1| |x2|k : y1 = sign(xp

1)x
p−1
1 , 1 = |x1|p + |x2|p }

= max
0≤x≤1

{ xp−1(1− xp)
k
p } = (

p− 1
k + p− 1

)
1
q (

k

k + p− 1
)

k
p

≤ (
p− 1

k + p− 1
)

1
q → 0 as k →∞,

which completes the proof. �
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