• Title/Summary/Keyword: homogeneous geodesics

Search Result 5, Processing Time 0.02 seconds

HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS

  • Zaili Yan;Tao Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1607-1620
    • /
    • 2023
  • In this paper, we mainly study the problem of the existence of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain a characterization of a homogeneous curve to be a geodesic. Then we show that every compact connected homogeneous sub-Finsler manifold and Carnot group admits at least one homogeneous geodesic through each point. Finally, we study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie groups. We show that every homogeneous curve in such a metric space is a geodesic. Moreover, we prove that the Alexandrov curvature of the metric space is neither non-positive nor non-negative.

UNIT KILLING VECTORS AND HOMOGENEOUS GEODESICS ON SOME LIE GROUPS

  • Yi, Seunghun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.291-297
    • /
    • 2006
  • We find unit Killing vectors and homogeneous geodesics on the Lie group with Lie algebra $\mathbf{a}{\oplus}_p\mathbf{r}$, where $\mathbf{a}$ and $\mathbf{r}$ are abelian Lie algebra of dimension n and 1, respectively.

  • PDF

RULED MINIMAL SURFACES IN PRODUCT SPACES

  • Jin, Yuzi;Kim, Young Wook;Park, Namkyoung;Shin, Heayong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2016
  • It is well known that the helicoids are the only ruled minimal surfaces in ${\mathbb{R}}^3$. The similar characterization for ruled minimal surfaces can be given in many other 3-dimensional homogeneous spaces. In this note we consider the product space $M{\times}{\mathbb{R}}$ for a 2-dimensional manifold M and prove that $M{\times}{\mathbb{R}}$ has a nontrivial minimal surface ruled by horizontal geodesics only when M has a Clairaut parametrization. Moreover such minimal surface is the trace of the longitude rotating in M while translating vertically in constant speed in the direction of ${\mathbb{R}}$.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.