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SEMI-RIEMANNIAN MANIFOLDS WITH HOMOGENEOUS

GEODESICS

Seong-Kowan Hong

Abstract. The purpose of this paper is to establish the notion of semi-

Riemannian manifolds M with the homogeneous geodesics, and investigate

properties about certain homogeneity.

1. Introduction

We adopt the notations in [8]. At first, let’s establish the notion of homoge-
neous geodesics.

Definition 1. A semi-Riemannian manifold M is homogeneous provided that,
given any points p, q in M , there is an isometry ϕ of M such that ϕ(p) = q.

Definition 2. Let p be a point in a complete semi-Riemannian manifoldM and
let A be an linear isometry of TpM . Consider the map Ã : M −→ M defined

by Ã ◦ exp = exp ◦A where exp : TpM −→M provided it is well-defined. If, at
the point p, M admits the maps defined above for all linear isometries of TpM ,
and furthermore they are isometries of M , then M is said to have homogeneous
geodesics at p.

Examples. (1) The pseudohyperbolic space H2
0 (r) of radius r > 0 in R3

1

is a 2-dimensional nonhomogeneous complete spacelike surface which has ho-
mogeneous geodesics at (1, 0, 0). (2) In R3, the graph of z = x2 + y2 is
a 2-dimensional nonhomogeneous complete Riemannian manifold which has
homogeneous geodesics at (0, 0, 0). (3) In R3, the solution of the equation
(xa )

2 + ( ya )
2 + ( zb )

2 = 1 is a 2-dimensional nonhomogeneous complete Riemann-
ian manifold which has homogeneous geodesics at (0, 0,±b), where a, b are
distinct positive reals.

Received December 12, 2022; Accepted January 17, 2023.
2010 Mathematics Subject Classification. 53B30, 53C50.
Key words and phrases. semi-Riemannian manifold, spacelike surface, homogeneous

geodesics.

This work was supported by a 2-Year Research Grant of Pusan National University.

©2023 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

37



38 S.-K. HONG

2. Semi-Riemannian Manifolds With Homogeneous Geodesics

Proposition 2.1. Let M be a connected complete semi-Riemannian manifold.
If M is a homogeneous space with homogeneous geodesics at a point, then it has
homogeneous geodesics at all points of M .

Proof. Suppose M has homogeneous geodesics at p ∈M . Let q be an arbitrary
point of M . Then there is an isometry ϕ such that ϕ(p) = q. Since an isometry
preserves geodesics, we know

ψ exp(tv) = exp(tψ∗v),−∞ < t <∞, v ∈ TM

for every isometry ψ of M .
Let A be a linear isometry of TqM . Then

Ã exp(tw) = exp tAw
= exp

(
t
(
ϕ∗ϕ

−1
∗ Aϕ∗ϕ

−1
∗

)
(w)

)
= exp

(
tϕ∗

(
ϕ−1
∗ Aϕ∗ϕ

−1
∗

)
(w)

)
= ϕ

(
exp t

(
ϕ−1
∗ Aϕ∗ϕ

−1
∗

)
(w)

)
= ϕ

(
exp

(
(ϕ−1

∗ Aϕ∗)
(
ϕ−1
∗ (tw)

)))
= ϕ

(
˜ϕ−1
∗ Aϕ∗ expϕ

−1
∗ (tw)

)
= ϕ ˜ϕ−1

∗ Aϕ∗ϕ
−1 exp(tw),

where −∞ < t < ∞, w ∈ TMq and ϕ−1
∗ Aϕ∗ is an isometry of TpM . Since

˜ϕ−1
∗ Aϕ∗ is well-defined and ϕ, ˜ϕ−1

∗ Aϕ∗ , ϕ−1 are all isometries, Ã is an isometry
of M .

□

Proposition 2.2. If a connected complete semi-Riemannian manifold M with
index 0 has homogeneous geodesics at p ∈ M , then the sectional curvatures of
the orthonormal pairs in TpM are all identical.

Proof. Let {u, v} and {z, w} be orthonormal pairs in TpM . Then extend {u, v}
and {z, w} to {u1 = u, u2 = v, u3, · · · , un}, {z1 = z, z2 = w, z3, · · · , zn}, which
are orthonormal bases of TpM . Let A be a linear isometry such that A(ui) = zi
for i = 1, . . . , n. Since Ã exp tv = exp tAv for v ∈ TpM , w−∞ < t < ∞, we

know that Ã∗v = Av. Then the sectional curvature

K(u, v) = K(Ã∗u, Ã∗v) = K(Au,Av) = K(z, w)

because A is an isometry. This completes the proof.
□

The following theorem is due to Schur.

Theorem 2.3. Let M be a connected Riemannian manifold of dimension ≥ 3.
If the sectional curvature, K(p), where p is a plane in Tx(M), depends only on
x, then M is a space of constant curvature.
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Proof. See Theorem 2.2 in [5]. □

Proposition 2.4. If a connected complete semi-Riemannian manifold M with
index 0 has homogeneous geodesics at every point of M and n = dimM ≥ 3,
then M is a space of constant curvature.

Proof. Since the sectional curvature depends only on the points ofM not on any
special orthonormal pairs in the tangent space, by Proposition 2.2 and Theorem
2.3, M is actually a space of constant curvature.

□

For the following, we will mean by a geodesic γ from p to q is a geodesic
defined on the unit interval [0, 1] such that γ(0) = p, γ(1) = q. And if v ∈ TpM ,
let γv be the geodesic defined by γv(t) = exp(tv).The restriction of γv to the
unit interval, that is, the geodesic from p to γv(1) in the direction of v will be
also denoted by γv.

Lemma 2.5. Let M be a connected complete semi-Riemannian manifold with
index 0. If q ∈ M is not a conjugate point of p along any geodesic, and L is a
positive number, then there are finitely many geodesics from p to q whose arc
lengths are ≤ L.

Proof. Suppose there are infinitely many such geodesics. Hence there are in-
finitely many γv’s such that v ∈ TpM , γv(1) = q, ∥v∥ ≤ L. Since the set
{v ∈ TpM : ||v|| ≤ L} is compact, there is a limit point z ∈ TpM with ||z|| ≤ L.
Since exp is a continuous map from TM to M , γz is also a geodesic from p
to q. exp is not critical on z because q = exp z is not a conjugate point of p
along γz, when exp is considered as a map from TpM . Therefore, exp is a local
diffeomorphism around z. But, for every neighborhood of z ∈ TpM , there is a
vector v such that exp v = exp z = q, which is a contradiction.

□

The following theorem is due to Hopf-Rinow.

Theorem 2.6. For a connected Riemannian manifold M the following condi-
tions are equivalent:

(1) As a metric space under Riemannian distance d, M is complete.
(2) There exists a point p ∈M from which M is geodesically complete.
(3) M is geodesically complete.
(4) Every closed bounded subset of M is compact.

Proof. See Theorem 21 in Ch.5 [8]. □

Theorem 2.7. Let M be a connected complete semi-Riemannian manifold with
index 0. If M is noncompact and has homogeneous geodesics at p ∈ M , then
for all q distinct from p, there are at most finite geodesics from p and q.
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Proof. Suppose there is a minimum point along a certain geodesic γw. We let
this minimum point γv(s) = exp(sv). Let w be another vector in TpM with
∥w∥ = ∥v∥. Then there is a linear isometry A of TpM such that A(v) = w.

Since γw(t) = exp tw = exp tAv = Ã exp tv, and Ã is an isometry, exp sw is
also a minimum point of p along the geodesic γw. Since every point p′ in M is
connected to p by a minimal geodesic and every minimal geodesic has length
less than or equal to s∥v∥, we have ρ(p, p′) ≤ s∥v∥. Hence M is a bounded set
and a compact set by the above Hopf-Rinow theorem. Therefore there are no
minimum points of p, and hence no conjugate points of p.

If exp tw = q, then t∥w∥ = ρ(p, q) because there is no minimum point of p.
Therefore, if γz is a geodesic from p to q, then arc length must be ρ(p, q).

Since q is not a conjugate point of p along any geodesic, we have the required
result by Lemma 2.5.

□

Theorem 2.8. Let M be a connected complete semi-Riemannian manifold with
index 0. If M is compact and homogeneous geodesics at a point p, then for all
vector v’s in TpM there is a positive real number tv such that γv(ntv) = p,
where n is an integer. And if t∗v is the minimum of such tv’s, then all t∗v’s are
identical.

Proof. Suppose there is no minimum points of p. Then, for every w in TpM ,
ρ(exp tw, p) = t∥w∥. This implies M is unbounded, hence M is noncompact.
Therefore, there is a minimum point along some geodesic. Let this minimum
point be exp t̄v along γv, where v is the unit vector in TpM . Since M has
homogeneous geodesics at p, for every unit vector w, exp t̄w is a minimum
point along γw. And it follows that every minimum point has the same distance
t̄ from p.

Next, we consider the following two cases.
Case 1. A minimum point of p, exp t̄v is not a conjugate point of p along γv,

hence every minimum point exp t̄w of p is not a conjugate point of p along γw :
There is a unique closed geodesic which ends at p and passes through exp t̄v

by Theorem 12 in Ch.11 [4]. Say this geodesic γz, where ∥z∥ = 1. Then for every
unit vector w in TpM , γw restricted to [0, t∗z] is also a closed geodesic since M
has homogeneous geodesics at p. And t∗z = t∗w is obtained by symmetry.

Case 2. A minimum point of p, exp t̄v is a conjugate point of p along γv,
hence every minimum point exp t̄w of p is a conjugate point of p along γw :

exp is critical at t̄v when exp is considered as a map defined on TpM . But we
know Tt̄v(TpM) is decomposed as Tt̄vS

n−1 and its 1-dimensional normal space
K which is generated by the velocity vector of the curve γ(t) = t(t̄v) at t̄v, where
Sn−1 = {x ∈ TpM |∥x∥ = t̄}, n = dim M . Since the curve γt̄v = exp γ has a
nonzero velocity vector everywhere, exp∗ restricted to K is an isomorphism.
Hence exp∗ restricted to Tt̄vS

n−1 must have a nonzero α ∈ Tt̄vS
n−1 such that

exp∗(α) = O. From this we know that exp restricted to Sn−1 must have rank
less than n− 1 at t̄v.
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If A is an isometry of TpM which maps t̄v to t̄w, and if α is a curve in TpM

such that α(0) = t̄v and d
dt |0 expα(t) = O, then d

dt |0Ã expα(t) = O since Ã

is a smooth map. But Ã expα(t) = expAα(t) and A∗ is an isomorphism of
Tt̄v(TpM) and Tt̄w(TpM). The previous argument says that if η ∈ Ttv(TpM)
and exp∗ η = O, then exp∗A∗η = O. It follows that the rank of exp at t̄v is
either equal to or smaller the the rank of exp at t̄w and that by symmetry they
are the same.

By the first part of the proof we know at t̄w, ∥w∥ = 1, the rank of exp
restricted to Sn−1 is the rank of exp without restriction minus one. Hence the
rank of exp restricted to Sn−1 is identical at all points of Sn−1.

Therefore, there are coordinate systems x of Sn−1 around t̄v and y around
exp t̄v such that y expx−1(a1, · · · , an−1) = (a1, · · · , ak, 0, · · · , 0), where k is the
constant rank of exp restricted to Sn−1.

If x(t̄v) = (b1, · · · , bk, bk+1, · · · , bn−1), we set

β(t) = x−1(b1, · · · , bk, bk+1, · · · , bn−1 + t).

Then y expβ(t) = (b1, · · · , bk, 0, · · · , 0) = y exp t̄v, hence expβ(t) = exp t̄v.
From this we know for some ϵ > 0, for every 0 < δ < ϵ, there is a vector t̄w

in Sn−1 such that exp t̄w = exp t̄v and < t̄v, t̄w >= (t̄)2 − δ.
Let {u, v} and {z, w} be pairs of unit vectors such that < u, v >=< z,w >.

If we set v′ = v−<u,v>u
∥v−<u,v>u∥ and w′ = w−<z,w>z

∥w−<z,w>w∥ , then {u, v′} and {z, w′} are

orthonormal pairs, hence there is an isometry A of TMp such that A(u) = z,
and A(v′) = w′. But v = v′ + lu and w = w′ + lz implies A(v) = w, where
l = <u,v>

∥v−<u,v>u∥ = <z,w>
∥w−<z,w>w∥ .

Suppose z is such that < t̄v, t̄z >= (t̄)2 − δ for 0 < δ < ϵ. Then there is an
isometry A and a unit vector w such that

A(t̄v) = t̄v, A(t̄w) = t̄z, exp t̄w = exp t̄v, < t̄v, t̄w >= (t̄)2 − δ.

Thus, exp t̄z = expAt̄w = Ã exp t̄w = Ã exp t̄v = expAt̄v = exp t̄v. Hence, the
set F = {w ∈ TpM : exp t̄w = exp t̄v} is an open subset of Sn−1. But the same
argument as above one shows that Sn−1 −F is also an open set of Sn−1. Since
Sn−1 is connected and v ∈ F , we have Sn−1 = F .

Parallel translation preserves inner products. If v1, . . . , vn form an orthonor-
mal basis of TpM , then the velocity vectors vi’s of γvi ’s at q = exp t̄v form
an orthonormal basis of TMq. If v′ =

∑
i civi, i.e. ci =< v′, vi >, then v′ is

the velocity vector of γ∑ civi at q. Hence the geodesics from q are actually the
geodesics from p and M has homogeneous geodesics at q.

Since p is a conjugate point and a minimum point of q along all directions,
we have exp t̄u = p for all unit vectors u ∈ TqM by the same argument as
above. Thus exp 2t̄v = p for all unit vectors v ∈ TpM . Every geodesic γv from
p, ∥v∥ = 1, must have t∗v = 2t̄, where bart is the diameter of M with respect to
the metric ρ.

□
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The following theorem is known as Morse index theorem.

Theorem 2.9. The index λ of E∗∗ is equal to the number of points γ(t), with
9 < t < 1, such that γ(t) is conjugate to γ(0) along γ; each such conjugate point
being counted with its multiplicity. This λ is always finite.

Proof. See Theorem 15.1 [7]. □

Theorem 2.10. Let M be a connected complete semi-Riemannian manifold
with index 0. If M is compact and has homogeneous geodesics at p in M , and
q is a point in M which is not a conjugate point of p along any geodesic, then
for every nonnegative integer n there are only finitely many geodesics from p to
q with indices less than or equal to n.

Proof. Since M is compact and has homogeneous geodesics at p in M , all
geodesics through p must return to p with the same period, say s̄.

Let v be a unit vector in TpM . Consider a variation α of γms̄v defined by
α(s, t) = γms̄c(s), where m is a positive integer and c is a smooth curve in the
unit sphere of TpM . Then α(s, 0) = α(s, 1) = p and α is a variation through
geodesics, hence the variation vector field of α is a Jacobi field which vanishes
at the end points of γms̄v by lemma 14.3 [7]. Hence p = expms̄v is a conjugate
point of itself along γv.

Suppose t is lager than (n + 1)s̄. Then, for every unit vector w, γtw has at
least n + 1 conjugate points from p to γtw(1), hence index larger than n by
theorem 2.9. Thus the required geodesic must be of length less than or equal
to (n + 1)s̄. Lemma 2.5 can be applied to this. There are only finitely many
geodesics from p to q with index ≤ n. □
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