East Asian Math. J. Vol. 39 (2023), No. 1, pp. 037–042 http://dx.doi.org/10.7858/eamj.2023.005

SEMI-RIEMANNIAN MANIFOLDS WITH HOMOGENEOUS GEODESICS

SEONG-KOWAN HONG

ABSTRACT. The purpose of this paper is to establish the notion of semi-Riemannian manifolds M with the homogeneous geodesics, and investigate properties about certain homogeneity.

1. Introduction

We adopt the notations in [8]. At first, let's establish the notion of homogeneous geodesics.

Definition 1. A semi-Riemannian manifold M is *homogeneous* provided that, given any points p, q in M, there is an isometry ϕ of M such that $\phi(p) = q$.

Definition 2. Let p be a point in a complete semi-Riemannian manifold M and let A be an linear isometry of T_pM . Consider the map $\tilde{A} : M \longrightarrow M$ defined by $\tilde{A} \circ \exp = \exp \circ A$ where $\exp : T_pM \longrightarrow M$ provided it is well-defined. If, at the point p, M admits the maps defined above for all linear isometries of T_pM , and furthermore they are isometries of M, then M is said to have homogeneous geodesics at p.

Examples. (1) The pseudohyperbolic space $H_0^2(r)$ of radius r > 0 in R_1^1 is a 2-dimensional nonhomogeneous complete spacelike surface which has homogeneous geodesics at (1,0,0). (2) In \mathbb{R}^3 , the graph of $z = x^2 + y^2$ is a 2-dimensional nonhomogeneous complete Riemannian manifold which has homogeneous geodesics at (0,0,0). (3) In \mathbb{R}^3 , the solution of the equation $(\frac{x}{a})^2 + (\frac{y}{a})^2 + (\frac{z}{b})^2 = 1$ is a 2-dimensional nonhomogeneous complete Riemannian manifold which has homogeneous geodesics at $(0,0,\pm b)$, where a, b are distinct positive reals.

©2023 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received December 12, 2022; Accepted January 17, 2023.

²⁰¹⁰ Mathematics Subject Classification. 53B30, 53C50.

Key words and phrases. semi-Riemannian manifold, spacelike surface, homogeneous geodesics.

This work was supported by a 2-Year Research Grant of Pusan National University.

S.-K. HONG

2. Semi-Riemannian Manifolds With Homogeneous Geodesics

Proposition 2.1. Let M be a connected complete semi-Riemannian manifold. If M is a homogeneous space with homogeneous geodesics at a point, then it has homogeneous geodesics at all points of M.

Proof. Suppose M has homogeneous geodesics at $p \in M$. Let q be an arbitrary point of M. Then there is an isometry ϕ such that $\phi(p) = q$. Since an isometry preserves geodesics, we know

$$\psi \exp(tv) = \exp(t\psi_* v), -\infty < t < \infty, v \in TM$$

for every isometry ψ of M.

Let A be a linear isometry of $T_q M$. Then

$$\begin{split} \hat{A} \exp(tw) &= \exp tAw \\ &= \exp \left(t \left(\phi_* \phi_*^{-1} A \phi_* \phi_*^{-1} \right) (w) \right) \\ &= \exp \left(t \phi_* \left(\phi_*^{-1} A \phi_* \phi_*^{-1} \right) (w) \right) \\ &= \phi \left(\exp t \left(\phi_*^{-1} A \phi_* \phi_*^{-1} \right) (w) \right) \\ &= \phi \left(\exp \left(\left(\phi_*^{-1} A \phi_* \right) \left(\phi_*^{-1} (tw) \right) \right) \right) \\ &= \phi \left(\phi_*^{-1} A \phi_* \exp \phi_*^{-1} (tw) \right) \\ &= \phi \phi_*^{-1} A \phi_* \phi^{-1} \exp(tw), \end{split}$$

where $-\infty < t < \infty$, $w \in TM_q$ and $\phi_*^{-1}A\phi_*$ is an isometry of T_pM . Since $\phi_*^{-1}A\phi_*$ is well-defined and ϕ , $\phi_*^{-1}A\phi_*$, ϕ^{-1} are all isometries, \widetilde{A} is an isometry of M.

Proposition 2.2. If a connected complete semi-Riemannian manifold M with index 0 has homogeneous geodesics at $p \in M$, then the sectional curvatures of the orthonormal pairs in T_pM are all identical.

Proof. Let $\{u, v\}$ and $\{z, w\}$ be orthonormal pairs in T_pM . Then extend $\{u, v\}$ and $\{z, w\}$ to $\{u_1 = u, u_2 = v, u_3, \dots, u_n\}$, $\{z_1 = z, z_2 = w, z_3, \dots, z_n\}$, which are orthonormal bases of T_pM . Let A be a linear isometry such that $A(u_i) = z_i$ for $i = 1, \dots, n$. Since $\widetilde{A} \exp tv = \exp tAv$ for $v \in T_pM$, $w - \infty < t < \infty$, we know that $\widetilde{A}_*v = Av$. Then the sectional curvature

$$K(u,v) = K(A_*u, A_*v) = K(Au, Av) = K(z, w)$$

because A is an isometry. This completes the proof.

The following theorem is due to Schur.

Theorem 2.3. Let M be a connected Riemannian manifold of dimension ≥ 3 . If the sectional curvature, K(p), where p is a plane in $T_x(M)$, depends only on x, then M is a space of constant curvature. *Proof.* See Theorem 2.2 in [5].

Proposition 2.4. If a connected complete semi-Riemannian manifold M with index 0 has homogeneous geodesics at every point of M and $n = \dim M \ge 3$, then M is a space of constant curvature.

Proof. Since the sectional curvature depends only on the points of M not on any special orthonormal pairs in the tangent space, by Proposition 2.2 and Theorem 2.3, M is actually a space of constant curvature.

For the following, we will mean by a geodesic γ from p to q is a geodesic defined on the unit interval [0, 1] such that $\gamma(0) = p, \gamma(1) = q$. And if $v \in T_p M$, let γ_v be the geodesic defined by $\gamma_v(t) = \exp(tv)$. The restriction of γ_v to the unit interval, that is, the geodesic from p to $\gamma_v(1)$ in the direction of v will be also denoted by γ_v .

Lemma 2.5. Let M be a connected complete semi-Riemannian manifold with index 0. If $q \in M$ is not a conjugate point of p along any geodesic, and L is a positive number, then there are finitely many geodesics from p to q whose arc lengths are $\leq L$.

Proof. Suppose there are infinitely many such geodesics. Hence there are infinitely many γ_v 's such that $v \in T_pM$, $\gamma_v(1) = q$, $||v|| \leq L$. Since the set $\{v \in T_pM : ||v|| \leq L\}$ is compact, there is a limit point $z \in T_pM$ with $||z|| \leq L$. Since exp is a continuous map from TM to M, γ_z is also a geodesic from p to q. exp is not critical on z because $q = \exp z$ is not a conjugate point of p along γ_z , when exp is considered as a map from T_pM . Therefore, exp is a local diffeomorphism around z. But, for every neighborhood of $z \in T_pM$, there is a vector v such that $\exp v = \exp z = q$, which is a contradiction.

The following theorem is due to Hopf-Rinow.

Theorem 2.6. For a connected Riemannian manifold M the following conditions are equivalent:

- (1) As a metric space under Riemannian distance d, M is complete.
- (2) There exists a point $p \in M$ from which M is geodesically complete.
- (3) M is geodesically complete.
- (4) Every closed bounded subset of M is compact.

Proof. See Theorem 21 in Ch.5 [8].

Theorem 2.7. Let M be a connected complete semi-Riemannian manifold with index 0. If M is noncompact and has homogeneous geodesics at $p \in M$, then for all q distinct from p, there are at most finite geodesics from p and q.

39

 \Box

 \Box

Proof. Suppose there is a minimum point along a certain geodesic γ_w . We let this minimum point $\gamma_v(s) = \exp(sv)$. Let w be another vector in T_pM with $\|w\| = \|v\|$. Then there is a linear isometry A of T_pM such that A(v) = w. Since $\gamma_w(t) = \exp tw = \exp tAv = \tilde{A} \exp tv$, and \tilde{A} is an isometry, $\exp sw$ is also a minimum point of p along the geodesic γ_w . Since every point p' in M is connected to p by a minimal geodesic and every minimal geodesic has length less than or equal to $s\|v\|$, we have $\rho(p, p') \leq s\|v\|$. Hence M is a bounded set and a compact set by the above Hopf-Rinow theorem. Therefore there are no minimum points of p, and hence no conjugate points of p.

If $\exp tw = q$, then $t||w|| = \rho(p,q)$ because there is no minimum point of p. Therefore, if γ_z is a geodesic from p to q, then arc length must be $\rho(p,q)$.

Since q is not a conjugate point of p along any geodesic, we have the required result by Lemma 2.5.

Theorem 2.8. Let M be a connected complete semi-Riemannian manifold with index 0. If M is compact and homogeneous geodesics at a point p, then for all vector v's in T_pM there is a positive real number t_v such that $\gamma_v(nt_v) = p$, where n is an integer. And if t_v^* is the minimum of such t_v 's, then all t_v^* 's are identical.

Proof. Suppose there is no minimum points of p. Then, for every w in T_pM , $\rho(\exp tw, p) = t||w||$. This implies M is unbounded, hence M is noncompact. Therefore, there is a minimum point along some geodesic. Let this minimum point be $\exp \bar{t}v$ along γ_v , where v is the unit vector in T_pM . Since M has homogeneous geodesics at p, for every unit vector w, $\exp \bar{t}w$ is a minimum point along γ_w . And it follows that every minimum point has the same distance \bar{t} from p.

Next, we consider the following two cases.

Case 1. A minimum point of p, $\exp \bar{t}v$ is not a conjugate point of p along γ_v , hence every minimum point $\exp \bar{t}w$ of p is not a conjugate point of p along γ_w :

There is a unique closed geodesic which ends at p and passes through $\exp \bar{t}v$ by Theorem 12 in Ch.11 [4]. Say this geodesic γ_z , where ||z|| = 1. Then for every unit vector w in T_pM , γ_w restricted to $[0, t^*z]$ is also a closed geodesic since Mhas homogeneous geodesics at p. And $t^*z = t^*w$ is obtained by symmetry.

Case 2. A minimum point of p, $\exp \bar{t}v$ is a conjugate point of p along γ_v , hence every minimum point $\exp \bar{t}w$ of p is a conjugate point of p along γ_w :

exp is critical at $\bar{t}v$ when exp is considered as a map defined on T_pM . But we know $T_{\bar{t}v}(T_pM)$ is decomposed as $T_{\bar{t}v}S^{n-1}$ and its 1-dimensional normal space K which is generated by the velocity vector of the curve $\gamma(t) = t(\bar{t}v)$ at $\bar{t}v$, where $S^{n-1} = \{x \in T_pM | ||x|| = \bar{t}\}, n = \dim M$. Since the curve $\gamma_{\bar{t}v} = \exp \gamma$ has a nonzero velocity vector everywhere, \exp_* restricted to K is an isomorphism. Hence \exp_* restricted to $T_{\bar{t}v}S^{n-1}$ must have a nonzero $\alpha \in T_{\bar{t}v}S^{n-1}$ such that $\exp_*(\alpha) = O$. From this we know that exp restricted to S^{n-1} must have rank less than n-1 at $\bar{t}v$. If A is an isometry of $T_p M$ which maps $\bar{t}v$ to $\bar{t}w$, and if α is a curve in $T_p M$ such that $\alpha(0) = \bar{t}v$ and $\frac{d}{dt}|_0 \exp \alpha(t) = O$, then $\frac{d}{dt}|_0 \tilde{A} \exp \alpha(t) = O$ since \tilde{A} is a smooth map. But $\tilde{A} \exp \alpha(t) = \exp A\alpha(t)$ and A_* is an isomorphism of $T_{\bar{t}v}(T_p M)$ and $T_{\bar{t}w}(T_p M)$. The previous argument says that if $\eta \in T_{tv}(T_p M)$ and $\exp_* \eta = O$, then $\exp_* A_* \eta = O$. It follows that the rank of \exp at $\bar{t}v$ is either equal to or smaller the the rank of \exp at $\bar{t}w$ and that by symmetry they are the same.

By the first part of the proof we know at $\bar{t}w$, ||w|| = 1, the rank of exp restricted to S^{n-1} is the rank of exp without restriction minus one. Hence the rank of exp restricted to S^{n-1} is identical at all points of S^{n-1} .

Therefore, there are coordinate systems x of S^{n-1} around $\bar{t}v$ and y around $\exp \bar{t}v$ such that $y \exp x^{-1}(a_1, \cdots, a_{n-1}) = (a_1, \cdots, a_k, 0, \cdots, 0)$, where k is the constant rank of exp restricted to S^{n-1} .

If $x(\bar{t}v) = (b_1, \dots, b_k, b_{k+1}, \dots, b_{n-1})$, we set

$$\beta(t) = x^{-1}(b_1, \cdots, b_k, b_{k+1}, \cdots, b_{n-1} + t).$$

Then $y \exp \beta(t) = (b_1, \cdots, b_k, 0, \cdots, 0) = y \exp \overline{t}v$, hence $\exp \beta(t) = \exp \overline{t}v$.

From this we know for some $\epsilon > 0$, for every $0 < \delta < \epsilon$, there is a vector $\bar{t}w$ in S^{n-1} such that $\exp \bar{t}w = \exp \bar{t}v$ and $\langle \bar{t}v, \bar{t}w \rangle = (\bar{t})^2 - \delta$.

Let $\{u, v\}$ and $\{z, w\}$ be pairs of unit vectors such that $\langle u, v \rangle = \langle z, w \rangle$. If we set $v' = \frac{v - \langle u, v \rangle u}{\|v - \langle u, v \rangle u\|}$ and $w' = \frac{w - \langle z, w \rangle z}{\|w - \langle z, w \rangle w\|}$, then $\{u, v'\}$ and $\{z, w'\}$ are orthonormal pairs, hence there is an isometry A of TM_p such that A(u) = z, and A(v') = w'. But v = v' + lu and w = w' + lz implies A(v) = w, where $l = \frac{\langle u, v \rangle}{\|v - \langle u, v \rangle u\|} = \frac{\langle z, w \rangle}{\|w - \langle z, w \rangle w\|}$.

Suppose z is such that $\langle \bar{t}v, \bar{t}z \rangle = (\bar{t})^2 - \delta$ for $0 < \delta < \epsilon$. Then there is an isometry A and a unit vector w such that

$$A(\bar{t}v) = \bar{t}v, A(\bar{t}w) = \bar{t}z, \exp \bar{t}w = \exp \bar{t}v, \langle \bar{t}v, \bar{t}w \rangle = (\bar{t})^2 - \delta.$$

Thus, $\exp \bar{t}z = \exp A\bar{t}w = \tilde{A} \exp \bar{t}w = \tilde{A} \exp \bar{t}v = \exp A\bar{t}v = \exp \bar{t}v$. Hence, the set $F = \{w \in T_p M : \exp \bar{t}w = \exp \bar{t}v\}$ is an open subset of S^{n-1} . But the same argument as above one shows that $S^{n-1} - F$ is also an open set of S^{n-1} . Since S^{n-1} is connected and $v \in F$, we have $S^{n-1} = F$.

Parallel translation preserves inner products. If v_1, \ldots, v_n form an orthonormal basis of T_pM , then the velocity vectors v_i 's of γ_{v_i} 's at $q = \exp \bar{t}v$ form an orthonormal basis of TM_q . If $v' = \sum_i c_i v_i$, i.e. $c_i = \langle v', v_i \rangle$, then v' is the velocity vector of $\gamma_{\sum c_i v_i}$ at q. Hence the geodesics from q are actually the geodesics from p and M has homogeneous geodesics at q.

Since p is a conjugate point and a minimum point of q along all directions, we have $\exp \bar{t}u = p$ for all unit vectors $u \in T_q M$ by the same argument as above. Thus $\exp 2\bar{t}v = p$ for all unit vectors $v \in T_p M$. Every geodesic γ_v from p, ||v|| = 1, must have $t_v^* = 2\bar{t}$, where *bart* is the diameter of M with respect to the metric ρ .

S.-K. HONG

The following theorem is known as Morse index theorem.

Theorem 2.9. The index λ of E_{**} is equal to the number of points $\gamma(t)$, with 9 < t < 1, such that $\gamma(t)$ is conjugate to $\gamma(0)$ along γ ; each such conjugate point being counted with its multiplicity. This λ is always finite.

Proof. See Theorem 15.1 [7].

q with indices less than or equal to n.

Theorem 2.10. Let M be a connected complete semi-Riemannian manifold with index 0. If M is compact and has homogeneous geodesics at p in M, and q is a point in M which is not a conjugate point of p along any geodesic, then

Proof. Since M is compact and has homogeneous geodesics at p in M, all geodesics through p must return to p with the same period, say \bar{s} .

for every nonnegative integer n there are only finitely many geodesics from p to

Let v be a unit vector in T_pM . Consider a variation α of $\gamma_{m\bar{s}v}$ defined by $\alpha(s,t) = \gamma_{m\bar{s}c(s)}$, where m is a positive integer and c is a smooth curve in the unit sphere of T_pM . Then $\alpha(s,0) = \alpha(s,1) = p$ and α is a variation through geodesics, hence the variation vector field of α is a Jacobi field which vanishes at the end points of $\gamma_{m\bar{s}v}$ by lemma 14.3 [7]. Hence $p = \exp m\bar{s}v$ is a conjugate point of itself along γ_v .

Suppose t is lager than $(n + 1)\bar{s}$. Then, for every unit vector w, γ_{tw} has at least n + 1 conjugate points from p to $\gamma_{tw}(1)$, hence index larger than n by theorem 2.9. Thus the required geodesic must be of length less than or equal to $(n + 1)\bar{s}$. Lemma 2.5 can be applied to this. There are only finitely many geodesics from p to q with index $\leq n$.

References

- Alekseevsky, D.V. and A. Arvanitoyeorgos, Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc. 359 (2007), 3769-3789
- [2] Alekseevsky, D.V. and Yu.G. Nikonorov, Compact Riemannian manifolds with homogeneous geodesics, SIGMA : Symmetry Integability Geom. Methods Appl. 5 (2009), 16-18
- [3] Berestovskii V. and Y. Nikonorov, Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Springer Nature Switzerland, 2020.
- [4] Bishop R. and Richard J. Crittenden, Geometry of Manifilds, Academic Press, New York, 1964.
- [5] Kobayashi S. and K. Nomizu, Foundations of Differential Geometry Vol.I II, Interscience Publishers, New York, 1963.
- Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161–185.
- [7] Milnor J., Morse Theory, Annals of Mathematical Studies No. 51 Princeton University Press, New Jersey, 1969.
- [8] O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.

SEONG-KOWAN HONG

DEPARTMENT OF MATHEMATICS EDUCATION, PUSAN NATIONAL UNIVERSITY, BUSAN, 46241, REPUBLIC OF KOREA

Email address: aromhong@hanafos.com