• Title/Summary/Keyword: history of Korean mathematics

Search Result 1,058, Processing Time 0.021 seconds

Evolution of the Stethoscope: Advances with the Adoption of Machine Learning and Development of Wearable Devices

  • Yoonjoo Kim;YunKyong Hyon;Seong-Dae Woo;Sunju Lee;Song-I Lee;Taeyoung Ha;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.4
    • /
    • pp.251-263
    • /
    • 2023
  • The stethoscope has long been used for the examination of patients, but the importance of auscultation has declined due to its several limitations and the development of other diagnostic tools. However, auscultation is still recognized as a primary diagnostic device because it is non-invasive and provides valuable information in real-time. To supplement the limitations of existing stethoscopes, digital stethoscopes with machine learning (ML) algorithms have been developed. Thus, now we can record and share respiratory sounds and artificial intelligence (AI)-assisted auscultation using ML algorithms distinguishes the type of sounds. Recently, the demands for remote care and non-face-to-face treatment diseases requiring isolation such as coronavirus disease 2019 (COVID-19) infection increased. To address these problems, wireless and wearable stethoscopes are being developed with the advances in battery technology and integrated sensors. This review provides the history of the stethoscope and classification of respiratory sounds, describes ML algorithms, and introduces new auscultation methods based on AI-assisted analysis and wireless or wearable stethoscopes.

The Status of Scientiae Mediae in the History of Mathematics: Biancani's Case

  • Park, Woo-Suk
    • Korean Journal of Logic
    • /
    • v.12 no.2
    • /
    • pp.141-170
    • /
    • 2009
  • We can witness the recent surge of interest in the controversy over the scientific status of mathematics among Jesuit Aristotelians around 1600. Following the lead of Wallace, Dear, and Mancosu, I propose to look into this controversy in more detail. For this purpose, I shall focus on Biancani's discussion of scientiae mediae in his dissertation on the nature of mathematics. From Dear's and Wallace's discussions, we can gather a relatively nice overview of the debate between those who championed the scientific status of mathematics and those who denied it. But it is one thing to fathom the general motivation of the disputation, quite another to appreciate the subtleties of dialectical strategies and tactics involved in it. It is exactly at this stage when we have to face some difficulties in understanding the point of Biancani's views on scientiae mediae. Though silent on the problem of scientiae mediae, Mancosu's discussions of the Jesuit Aristotelians' views on potissima demonstrations, mathematical explanations, and the problem of cause are of utmost importance in this regard, both historically and philosophically. I will carefully examine and criticize some of Mancosu's interpretations of Piccolomini's and Biancani's views in order to approach more closely what was really at stake in the controversy.

  • PDF

A Study on the instruction of the Infinity Concept with suitable examples - focused on Curriculum of Middle School - (무한 개념의 지도방안과 활용 예제 - 중학교 교육과정을 중심으로 -)

  • Kim, Mee-Kwang
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.447-465
    • /
    • 2008
  • The purpose of this study is to suggest effective teaching methods on the concept of infinity for students to obtain the right concept in the middle school curriculum. Many people have thought that infinity is something vouge and unapproachable. But, nowadays it is rather something with a precise definition that lies at the core of modern mathematics. To understand mathematics and science very well, it is necessary to comprehend the concept of infinity. But students tend to figure out the properties of infinite objects and limit concepts only through their experience closely related to finite process, and so they are apt to have their spontaneous intuition and misconception about it. Since most of them have cognitive obstacles in studying the infinite concepts and misconception, mathematics teachers need to help them overcome the obstacles and establish the right secondary intuition for the concepts through good examples and appropriate explanation. In this study, we consider the developing process of the concept of infinity in human history and give some comments and suggestions in teaching methods relative to that concept with new suitable examples.

  • PDF

A Trend Analysis on the Educational Research of the Probability and Statistics - Focused on Papers Published in , the Journal of Korea Society of Mathematical Education - (확률.통계 연구에 대한 수학교육학적 고찰 -<수학교육>에 게재된 논문을 중심으로-)

  • 이영하;심효정
    • The Mathematical Education
    • /
    • v.42 no.2
    • /
    • pp.203-218
    • /
    • 2003
  • The purpose of this study is to see what the essential characteristics are in teaching probability and statistics among various mathematical fields. we also tried to connect the study of probability and statistics education with what is needed for a science be synthetic to have its own identity as a unique research field. Since we searched for the future direction of the pedagogic study in the probability and statistics we first selected papers on probability and statistics published in (Series A), the Journal of Korea Society of Mathematical Education, and establish the following research questions. What kinds of characteristics can be found when papers on probability and statistics published in (Series A) are classified into low categories; contents of probability and statistics education, research method of the mathematics education, methods of teaming and teaching, and finally measurements and evaluation\ulcorner We classified papers into two kinds. One is related to the educational contents, consisting of the methods of learning and teaching, and of the measurement and evaluation. The other is reined to the methods of research, which is not a part of the educational curriculum but is essential for establishing the identity of mathematics education. According to the periods, papers on the curricular contents in 1960s were influenced by the New Mathematics, and papers on the curricular contents in 1980s were influenced by 'back to basic'. In 1990s, papers on methods of learning and teaching, and measurement md evaluation were increasing in number. Besides, (series A) from the Journal of Korea Society of Mathematical Education covers contents, methods of Loaming and teaching, and measurement and evaluation. And when I examined the papers on the contents of textbook of a junior high school related to the probability and statistics education and on methods of learning and teaching, 1 found that those papers occupy 1.84% in . When it comes to the methods of loaming and teaching, most of studies in (series A) are about application of concrete implement like experiment and practical application of computer programs, Through this study, I found that over-all and more active researches on probability and statistics are required and that the studies about methods of loaming and teaching must be made in diverse directions. It is needed that how students recognize probability and statistics, connection, communication and representation in probability and statistics context, too. (series A) does not have papers on methods of study. Mathematics pedagogy is a mixture of various studies - mathematical psychology, mathematical philosophy, the history of mathematics and Mathematics. So If there doesn't exist a proper method of study adequate in the situation for the mathematics education the issue of mathematics pedagogy might be taken its own place by that of other studies'. We must search for the unique method of study fur mathematics education so that mathematics pedagogy has its own identity as a study. The study concerning this aspect is needed.

  • PDF

Reflections on the Elementary School Geometry Curriculum in the Netherlands -Based on the Realistic Mathematics Education- (네덜란드의 초등학교 기하 교육과정에 대한 개관 -현실적 수학교육을 중심으로-)

  • Chong, Yeong-Ok
    • School Mathematics
    • /
    • v.9 no.2
    • /
    • pp.197-222
    • /
    • 2007
  • The study aims to reflect the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands in the light of the results from recent researches in geometry education and the direction of geometry standards for school mathematics of the National Council of Teachers of Mathematics in order to induce implications for improving korean geometry curriculum and textbook series. In order to attain these purposes, the present paper reflects the history of elementary school geometry education in the Netherlands, sketches the elementary school geometry education based on the Realistic Mathematics Education in the Netherlands by reflecting general goals of the mathematics education, the core goals for geometry strand of the Netherlands, and geometry and spatial orientation strand of Dutch Pluspunt textbook series for the elementary school more concretely. Under these reflections on the documents, it is analyzed what is the characteristics of geometry strand in the Netherlands as follows: emphasis on realistic spatial phenomenon, intuitive and informal approach, progressive approach from intuitive activity to spatial reasoning, intertwinement of mathematics strands and other disciplines, emphasis on interaction of the students, cyclical repetition of experiencing phase, explaining phases, and connecting phase. Finally, discussing points for improving our elementary school geometry curriculum and textbook series development are described as follows: introducing spatial orientation and emphasizing spatial visualization and spatial reasoning with respect to the instruction contents, considering balancing between approach stressing on grasping space and approach stressing on logical structure of geometry, intuitive approach, and integrating mathematics strands and other disciplines with respect to the instruction method.

  • PDF

Pedagogical Approach of the Nine Chapters on the Mathematical Art and Nam Byung Gil's GuJangSulHae (<구장산술九章算術>과 남병길의 <구장술해九章術解>의 교육적 활용 방안)

  • Jung, Hae-Nam
    • Education of Primary School Mathematics
    • /
    • v.14 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • 'The nine chapters on the mathematical art' has dominated the history of Chinese mathematics. It contains 246 problems and their solutions, which fall into nine categories that are firmly based on practical needs. But it has been greatly by improved by the commentary given Liu Hui and it was transformed from arithmetic text to mathematics. The improved book served as important textbook in China but also the East Asian countries for the past 2000 years. Also It is comparable in significance to Euclid's Elements in the West. In the middle of 19th century, Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) studied mathematical structures developed in Song(宋) and Yuan(元) eras on top of their early on 'The nine chapters' and 'ShuLiJingYun(數理精蘊)'. Their studies gave rise to a momentum for a prominent development of Choson mathematics in the century. Nam Byung Gil is also commentator on 'The Nine Chapters'. His commentary is 'GuJangSulHae(九章術解)'. This book provides figures and explanations of how the algorithms work. These are very helpful for prospective elementary teachers. We try to plan programs of elementary teacher education on the basis of 'The Nine Chapters' and 'GuJangSulHae'.

A study on finding solutions to generalized Jisuguimundo(hexagonal tortoise problem) (일반화된 지수귀문도의 해를 구하는 방법에 관한 연구)

  • Park, Kyo-Sik
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.261-275
    • /
    • 2011
  • Seok-Jung Choi's Jisuguimundo mentioned as a brilliant legacy in the history of Korean mathematics had been cloaked in mystery for 300 years. In the meantime there has been some efforts to find solutions, and some particular answers were found, but no one achieved full success mathematically. By the way, H-alternating method showed that to find solutions of Jisuguimundo is possible, even though that method restricted magic number to 88~92 and 94~98. In this paper, $n{\times}n$ Jisuguimundo is defined, and it is showed that finding solutions of it is always possible in case of partition $({\upsilon}+1)+{\upsilon}+({\upsilon}+1)$ & co-partition ${\upsilon}+({\upsilon}+1)+{\upsilon}$, partition $({\upsilon}+1)+({\upsilon}-1)+({\upsilon}+1)$ & co-partition $({\upsilon}-1)+({\upsilon}+1)+({\upsilon}-1)$, partition $({\upsilon}+1)+({\upsilon}+2)+({\upsilon}+1)$ & co-partition $({\upsilon}+2)+({\upsilon}+1)+({\upsilon}+2)$, and partition $({\upsilon}+1)+({\upsilon}+3)+({\upsilon}+1)$ & co-partition $({\upsilon}+3)+({\upsilon}+1)+({\upsilon}+3)$. And It is suggested to find solutions of $n{\times}n$ Jisuguimundo could be used as a task for problem solving.

  • PDF

On the Usage of the Multiplication and Parentheses signs (곱셈과 괄호 기호의 사용에 대한 연구)

  • Lee, Min Jung;Lee, Yang;Yang, Sung Pil;Park, Mi Suk
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.4
    • /
    • pp.627-641
    • /
    • 2012
  • We found a few students had an error in the function and equation units, because most of mathematicians omitted the multiplication signs. In the mathematical history, the multiplication and parentheses signs had various changes. Based on the Histogenetic Principle, high level students know that the letter in the functions and equations represents a number and the related principles, so they have no big problems. But since the low level students stay in the early days in the mathematical history, they have some problems in the modern function and equation. Therefore, while we study the function and equation units with the low level students, we present that we have to be cautious when we omit the multiplication and parentheses signs.

  • PDF

A study for Build the Concept Image about Natural Logarithm under GeoGebra Environment (GeoGebra 환경에서 정적분을 이용한 자연로그의 개념이미지 형성 학습 개선방안)

  • Lee, Jeong-Gon
    • Journal for History of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The purpose of this study is to find the way to build the concept image about natural logarithm and the method is using definite integral in calculus under GeoGebra environment. When the students approach to natural logarithm, need to use dynamic program about the definite integral in calculus. Visible reasoning process through using dynamic program(GeoGebra) is the most important part that make the concept image to students. Also, for understand mathematical concept to students, using GeoGebra environment in dynamic program is not only useful but helpful method of teaching and studying. In this article, about graph of natural logarithm using the definite integral, to explore process of understand and to find special feature under GeoGebra environment. And it was obtained from a survey of undergraduate students of mathmatics. Also, relate to this process, examine an aspect of students, how understand about connection between natural logarithm and the definite integral, definition of natural logarithm and mathematical link of e. As a result, we found that undergraduate students of mathmatics can understand clearly more about the graph of natural logarithm using the definite integral when using GeoGebra environment. Futhermore, in process of handling the dynamic program that provide opportunity that to observe and analysis about process for problem solving and real concept of mathematics.

Hong Gil Ju(洪吉周)'s Algebra (홍길주(洪吉周)의 대수학(代數學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we investigate the part dealing with algebra in Hong Gil Ju's GiHaSinSul to analyze his algebraic structure. The book consists of three parts. In the first part SangChuEokSan, he just renames Die jie hu zheng(疊借互徵) in Shu li jing yun to SangChuEokSan and adds a few examples. In the second part GaeBangMongGu, he obtains the following identities: $$n^2=n(n-1)+n=2S_{n-1}^1+S_n^0;\;n^3=n(n-1)(n+1)+n=6S_{n-1}^2+S_n^0$$; $$n^4=(n-1)n^2(n+1)+n(n-1)+n=12T_{n-1}^2+2S_{n-1}^1+S_n^0$$; $$n^5=2\sum_{k=1}^{n-1}5S_k^1(1+S_k^1)+S_n^0$$ where $S_n^0=n,\;S_n^{m+1}={\sum}_{k=1}^nS_k^m,\;T_n^1={\sum}_{k=1}^nk^2,\;and\;T_n^2={\sum}_{k=1}^nT_k^1$, and then applies these identities to find the nth roots $(2{\leq}n{\leq}5)$. Finally in JabSwoeSuCho, he introduces the quotient ring Z/(9) of the ring Z of integers to solve a system of congruence equations and also establishes a geometric procedure to obtain golden sections from a given one.

  • PDF