Pedagogical Approach of the Nine Chapters on the Mathematical Art and Nam Byung Gil's GuJangSulHae

<구장산술九章算術>과 남병길의 <구장술해九章術解>의 교육적 활용 방안

  • Jung, Hae-Nam (Dept. of Mathematics, Sungshin Women's University)
  • Received : 2011.07.18
  • Accepted : 2011.08.26
  • Published : 2011.08.31


'The nine chapters on the mathematical art' has dominated the history of Chinese mathematics. It contains 246 problems and their solutions, which fall into nine categories that are firmly based on practical needs. But it has been greatly by improved by the commentary given Liu Hui and it was transformed from arithmetic text to mathematics. The improved book served as important textbook in China but also the East Asian countries for the past 2000 years. Also It is comparable in significance to Euclid's Elements in the West. In the middle of 19th century, Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) studied mathematical structures developed in Song(宋) and Yuan(元) eras on top of their early on 'The nine chapters' and 'ShuLiJingYun(數理精蘊)'. Their studies gave rise to a momentum for a prominent development of Choson mathematics in the century. Nam Byung Gil is also commentator on 'The Nine Chapters'. His commentary is 'GuJangSulHae(九章術解)'. This book provides figures and explanations of how the algorithms work. These are very helpful for prospective elementary teachers. We try to plan programs of elementary teacher education on the basis of 'The Nine Chapters' and 'GuJangSulHae'.

동아시아 수학사에서 가장 중요하고 기초적인 문헌은 <구장산술九章算術>이다. 이 책은 오랜 세월 동안 여러 주석가들에 의해 보완되고 재해석되며 광범위한 영향력을 미쳤다. 우리나라 역시 이 영향권 안에서 삼국시대 이래로 <구장산술>을 기본 산학서로 취급해 왔고 19세기 조선 수학자 남병길은 이 책에 대한 주석서 <구장술해九章術解>를 출판했다. 본 연구에서는 이 두 책의 구성과 내용을 확인하고 그것의 교육적 활용 가능성에 대해 모색해본다.


Supported by : 성신여자대학교


  1. 김용운.김용국 (1996). 중국 수학사. 서울: 민음사.
  2. 김용운.김용국 (2009). 한국 수학사. 서울: 살림
  3. 남병길 (2006a). 유인영.허민(역). 유씨구고술도해. 서울: 교우사
  4. 남병길 (2006b). 유인영.허민(역). 측량도해. 서울: 교우사.
  5. 유휘 (1998). 김혜경.유주영(역). 구장산술. 서울: 서해문집.
  6. 유휘 (2000). 차종천(역). 구장산술.주비산경. 서울: 범양출판사.
  7. 이노국 (2006). 19세기 천문수학서적 연구: 남병철 .남병길 저술을 중심으로. 서울: 한국학술정보
  8. 이상혁 (2006a). 김상미.허민(역). 산술관견. 서울: 교우사.
  9. 이상혁 (2006b). 호문룡.이재실(역). 차근방몽구. 서울:교우사.
  10. 이상혁 (2006c). 홍성사(역). 익산. 서울: 교우사
  11. 장혜원 (2005). 동양의 영부족술과 서양의 가정법. 한국수학사학회지, 18(1), 33-48.
  12. 장혜원 (2010). 수학박물관. 파주: 성안당.
  13. 최석정 (2006). 정해남.허민(역). 구수략. 서울: 교우사
  14. 홍성사.홍영희 (1998). 劉徽와 九章算術. 한국수학사학회지, 11(1), 27-35.
  15. 홍성사.홍영희 (2007a). 朝鮮算學과 四元玉鑑, 한국수학사학회지, 20(1), 1-16.
  16. 홍성사.홍영희 (2007b). 南秉吉의 方程式論. 한수학사학회지, 20(2), 1-18.
  17. 홍성사.홍영희 (2008). 李尙爀의 借根方蒙求와 數理精蘊. 한국수학사학회지, 21(4), 11-18.
  18. 홍성사.홍영희.김창일 (2008). 19世紀朝鮮의 句股術. 한국수학사학회지, 21(2), 1-16.
  19. 홍영희 (2006). 朝鮮算學과 數理精蘊. 한국수학사학회지, 19(2), 25-46.
  20. 홍정하 (2006). 강신원.장혜원(역). 구일집. 서울: 교우사.
  21. Kangshen, S., Crossley, J.N. & Lun, A. W.-C. (1999). The nine chapters on the mathematical art. Beijing: Oxford University Press and Science Press.
  22. Laubenbacher, R. C. & Pengelly, D. (1996). 허민(역). 수학의 명작: 원전을 이용한 교육. 한국수학사학회지, 10(1), 39-45.
  23. NCTM (1989). Historical topics for the mathematical classroom. Reston, VA.: National Council of Teachers Mathematics
  24. NCTM (2000). Principles and standards for school mathematics. Reston, VA.: National Council of Teachers Mathematics
  25. Siu, M-K. (2000). The ABCD of history of mathematics (Undergraduate) classroom. In Katz, V. J. (Ed), Using history to teach mathematics (pp. 3- 10). Washington DC: The Mathematical Association of America.
  26. Tymoczko, T(1993). Humanistic and utilitarian aspects of mathematics. In White, A. W. (Ed.), Essay in humanistic mathematics (pp. 11-14 ). Washinton, DC: The Mathematical Association of America