• Title/Summary/Keyword: high-speed imaging

Search Result 241, Processing Time 0.026 seconds

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

Algorithm Selection Method for Efficient Maximum Intensity Projection Based on User Preference (사용자 선호에 기반한 효율적 최대 휘소 가시화 알고리즘의 선택 방법)

  • Han, Cheol Hee;Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • Maximum intensity projection (MIP) is a common visualization technique in medical imaging system. A typical method to improve the performance of MIP is empty space leaping, which skips unnecessary area. This research proposes a new method to improve the existing empty space leaping. In order to skip more regions, we introduce a variety of acceleration strategies that use some tolerance given by the user to take part in image quality loss. Each proposed method shows various image quality and speed, and this study compares them to select the best one. Experimental results show that it is most efficient to add a constant tolerance function when the image quality required by the user is low. Conversely, when the user required image quality is high, a function with a low tolerance of volume center is most effective. Applying the proposed method to general MIP visualization can generate a relatively high quality image in a short time.

An experimental study for characteristic change of Electrohydrodynamic jetting (전기수력학 프린팅의 분사 특성 변화에 대한 실험적연구)

  • Kim, Hyo-Jun;Chung, Jong-Ryul;Yang, Jung-Kun;Chung, Jae-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1913-1916
    • /
    • 2008
  • Electrohydrodynamic (EHD) printing has gained significant interest after a direct writing with a resolution of a few tens nanometer was demonstrated using EHD. Basically, EHD use the electric field to generate droplet which is much smaller than nozzle diameter, so that high resolution printing is possible and the clogging problem can be alleviated as well. However, to adapt this technology to the real application, the fundamental studies are necessary to stabilize EHD jetting, to maximize jetting frequency, and to optimize the design of multi EHD nozzle, etc. In this study, by imaging EHD jetting using high speed camera and measuring the current, the effect of electric field intensity and back pressure on jetting frequency and jetting diameter were studied.

  • PDF

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis (기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징)

  • Kwon, Daa young;Oak, Chulho;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.243-248
    • /
    • 2019
  • The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods

  • Sohee Park;Jae Hyun Kwon;So Yeon Kim;Ji Hun Kang;Jung Il Chung;Jong Keon Jang;Hye Young Jang;Ju Hyun Shim;Seung Soo Lee;Kyoung Won Kim;Gi-Won Song
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1260-1268
    • /
    • 2022
  • Objective: To propose standardized MRI-proton density fat fraction (PDFF) cutoff values for diagnosing hepatic steatosis, evaluated using contemporary PDFF measuring methods in a large population of healthy adults, using histologic fat fraction (HFF) as the reference standard. Materials and Methods: A retrospective search of electronic medical records between 2015 and 2018 identified 1063 adult donor candidates for liver transplantation who had undergone liver MRI and liver biopsy within a 7-day interval. Patients with a history of liver disease or significant alcohol consumption were excluded. Chemical shift imaging-based MRI (CS-MRI) PDFF and high-speed T2-corrected multi-echo MR spectroscopy (HISTO-MRS) PDFF data were obtained. By temporal splitting, the total population was divided into development and validation sets. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of the MRI-PDFF method. Two cutoff values with sensitivity > 90% and specificity > 90% were selected to rule-out and rule-in, respectively, hepatic steatosis with reference to HFF ≥ 5% in the development set. The diagnostic performance was assessed using the validation set. Results: Of 921 final participants (624 male; mean age ± standard deviation, 31.5 ± 9.0 years), the development and validation sets comprised 497 and 424 patients, respectively. In the development set, the areas under the ROC curve for diagnosing hepatic steatosis were 0.920 for CS-MRI-PDFF and 0.915 for HISTO-MRS-PDFF. For ruling-out hepatic steatosis, the CS-MRI-PDFF cutoff was 2.3% (sensitivity, 92.4%; specificity, 63.0%) and the HISTO-MRI-PDFF cutoff was 2.6% (sensitivity, 88.8%; specificity, 70.1%). For ruling-in hepatic steatosis, the CS-MRI-PDFF cutoff was 3.5% (sensitivity, 73.5%; specificity, 88.6%) and the HISTO-MRI-PDFF cutoff was 4.0% (sensitivity, 74.7%; specificity, 90.6%). Conclusion: In a large population of healthy adults, our study suggests diagnostic thresholds for ruling-out and ruling-in hepatic steatosis defined as HFF ≥ 5% by contemporary PDFF measurement methods.

High-Speed NMR Imaging by Spiral -Scan Echo Planar Method (나선형 주사 방법에 의한 고속 NMR 영상화 연구)

  • Ahn, C.B.;Rew, C.Y.;Kim, J.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.22-25
    • /
    • 1985
  • 본고에서, "나선형 주사 방법에 의한 고속 NMR 영상화" 방법을 제안하고 그에 따른 실험 결과를 보였다. 이것은 2차원 FID 영역을 나선형 궤적으로 스캐닝하며 데이타를 받을 수 있도록 경사 자계 파형 (gradient pulse)을 가하여 빠른 시간에 (수십 msec - 수초)내에 영상 정보를 얻어낸 후, 재구성 알고리즘을 씀으로써 영상을 얻어내는 방법이다. 이 방법의 장점은 첫째로 $T_2$ 감쇄에 의한 PSF (Point Spread Function)가 윈형 대칭으로 주어지므로 영상화 했을때 물체의 구조 식별이 기존의 EPI (Echo Planar Imaging) 방법에 비해서 선명하며, 둘째로 나선형 궤적을 구현하기 의한 경사 자계 파형에서 불연속 점을 없앰과 동시에 파형의 세기가 점차로 증가하는 형태이므로, 기존의, 파형 왜곡에 의해 영상에 미치는 영향을 최소화 할 수가 있으며, 세째로 나선형 스캔을 사이 사이에 끼워 넣는 방법을 씀으로써 해상도를 향상시킬 수가 있다.

  • PDF

HDR Image Acquisition from Two LDR Images (두 장의 LDR 영상을 이용한 HDR 영상 취득 기법)

  • Park, Tae-Jang;Park, In-Kyu
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.247-257
    • /
    • 2011
  • In this paper, we propose a scene adaptive method to obtain two LDR images with proper shutter speeds which capture the irradiance of scene effectively. The proposed method adaptively selects two shutter speeds across the video frame even when the illumination varies continuously. For the performance evaluation, we compute the PNSR to the ground truth which is obtained by the state-of-the-art HDR imaging method. It shows that the proposed method is able to select approximately optimal shutter speeds while avoiding the exhaustive search of every possible pair of shutter speeds.