DOI QR코드

DOI QR Code

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis

기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징

  • Kwon, Daa young (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University) ;
  • Oak, Chulho (Innovative Biomedical Technology Research Center) ;
  • Ahn, Yeh-Chan (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University)
  • 권다영 (부경대학교 의생명기계전기융합공학협동과정) ;
  • 옥철호 (동남권 의공학 임상혁신 융합 연구단) ;
  • 안예찬 (부경대학교 의생명기계전기융합공학협동과정)
  • Received : 2019.10.31
  • Accepted : 2019.11.22
  • Published : 2019.12.25

Abstract

The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

기관지는 호흡과정에 있어서 호흡기 시스템의 필수적인 부분이다. 그러나 기관에 협착이 발생하면 기관지 안쪽이 좁아져 호흡을 원활하게 유지하는데 문제가 되기 때문에 조기에 진단 및 치료를 함으로써 증상의 악화를 예방하는 것이 중요하다. 천식은 기도 협착의 가역적 원인의 전형적인 예이며, 급성 악화로 고통받는 환자의 수는 꾸준히 증가하고 있다. 고해상도의 광 결맞음 단층촬영법(optical coherence tomography, OCT)은 조직의 미세 구조를 관찰하는 데 적합하다. 본 연구에서는 내시경 광 결맞음 단층촬영법을 개발하였다. 1,300 nm 광 결맞음 단층촬영법과 고속으로 회전할 수 있는 서보모터를 결합하였다. 모터를 이용하여 360도 회전하면서 이미징하는 동안 프로그램으로 조작이 가능한 선형 스테이지를 사용하여 내시경 프로브를 풀백했다. 모터는 토크, 회전 속도 및 풀리의 기어비와 같은 다양한 요구사항을 고려하여 선정하였다. 샘플로는 생체 외토끼 기도 모델을 사용하였고, 샘플과 카테터는 모터 회전에 의해 흔들리지 않도록 아크릴 구조물로 고정시켰다. 광 결맞음 단층촬영 이미지는 점막 및 점막하층 구조에 대한 정보를 제공하며, 정상부분과 협착부분의 차이를 영상에서 확인할 수 있었다. 또한, 3차원 영상 복원 과정을 통해, 단면 영상과 더불어 3차원 영상에서도 기도의 협착을 식별할 수 있었다. 이 연구는 기도 협착증 진단에 도움을 줄 수 있는 영상법 개발 뿐만아니라 3차원 영상을 구현했다는 점에서 의미가 있다.

Keywords

References

  1. The Korean Center for Disease Classification and Information, "Disease statistics section," (KOICD Centers for Disease Classification and Information), http://www.koicd.kr/2016/stats/diseaseStats.do (2019.04.15.).
  2. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996). https://doi.org/10.1364/OL.21.000543
  3. P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D: Appl. Phys. 38, 2519 (2005). https://doi.org/10.1088/0022-3727/38/15/002
  4. N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, "Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura," J. Thorac. Cardiovasc. Surg. 129, 615-622 (2005). https://doi.org/10.1016/j.jtcvs.2004.10.022
  5. G. K. Sharma, G. S. Ahuja, M. Wiedmann, K. E. Osann, E. Su, A. E. Heidari, J. C. Jing, Y. Qu, F. Lazarow, A. Wang, L. Chou, C. C. Uy, V. Dhar, J. P. Cleary, N. Pham, K. Huoh, Z. Chen, and B. J.-F. Wong, "Long-range optical coherence tomography of the neonatal upper airway for early diagnosis of intubation-related subglottic injury," Am. J. Respir. Crit. Care Med. 192, 1504-1513 (2015). https://doi.org/10.1164/rccm.201501-0053OC
  6. H. S. Cho, S.-J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W.-Y. Oh, "High frame-rate intravascular optical frequency-domain imaging in vivo," Biomed. Opt. Express 5, 223-232 (2014). https://doi.org/10.1364/BOE.5.000223
  7. J. Y. Ha and S. W. Lee, "Optical coupling device for OCT system," Korea Patent 10-1658447 (2016).
  8. H. Pahlevaninezhad, A. M. D. Lee, A. Ritchie, T. Shaipanich, W. Zhang, D. N. Ionescu, G. Hohert, C. MacAulay, S. Lam, and P. Lane, "Endoscopic doppler optical coherence tomography and autofluorescence imaging of peripheral pulmonary nodules and vasculature," Biomed. Opt. Express 6, 4191-4199 (2015). https://doi.org/10.1364/BOE.6.004191
  9. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, "Methods and application areas of endoscopic optical coherence tomography," J. Biomed. Opt. 11, 063001 (2006). https://doi.org/10.1117/1.2400214
  10. Y.-C. Ahn, W. Jung, and Z. Chen, "Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel," Lab. Chip 8, 125-133 (2008). https://doi.org/10.1039/B713626A
  11. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, "Linear-wavenumber spectrometer for high-speed spectraldomain optical coherence tomography," Opt. Spectrosc. 106, 459-465 (2009). https://doi.org/10.1134/S0030400X09030242
  12. S.-W Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W. Jung, and Z. Chen, "Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 ${\mu}$m," J. Korean Phys. Soc. 55, 2354-2360 (2009). https://doi.org/10.3938/jkps.55.2354
  13. B. G. Muller, R. A. A. van Kollenburg, A. Swaan, E. C. H. Zwartkruis, M. J. Brandt, L. S. Wilk, M. Almasian, A. W. Schreurs, D. J. Faber, L. R. Rozendaal, A. N. Vis, J. A. Nieuwenhuijzen, J. R. J. A. van Moorselaar, J. J. M. C. H. de la Rosette, D. M. de Bruin, and T. G. van Leeuwen, "Needle-based optical coherence tomography for the detection of prostate cancer: a visual and quantitative analysis in 20 patients," J. Biomed. Opt. 23, 086001 (2018).
  14. T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. V. D. Steen, R. Huber, and G. V. Soest, "Intravascular optical coherence tomography imaging at 3200 frames per second," Opt. Lett. 38, 1715-1717 (2013). https://doi.org/10.1364/OL.38.001715
  15. A. A. Gurjarpadhye, M. R. DeWitt, Y. Xu, G. Wang, M. N. Rylander, and C. G. Rylander, "Dynamic assessment of the endothelialization of tissue-engineered blood vessels using an optical coherence tomography catheter-based fluorescence imaging system," Tissue Eng. Part C 21, 758-766 (2015). https://doi.org/10.1089/ten.tec.2014.0345
  16. H. S. Cho, S.-J. Jang, and W.-Y. Oh, "Development of a high-speed endoscopic OCT system and its application to three-dimensional intravascular imaging in vivo," Korean J. Opt. Photon. 25, 67-71 (2014). https://doi.org/10.3807/KJOP.2014.25.2.067
  17. H. S. Lee, S. W. Kim, C. Oak, H. W. Kang, J. Oh, M. J. Jung, S. B. Kim, J. H. Won, and K. D. Lee, "Rabbit model of tracheal stenosis using cylindrical diffuser," Lasers Surg. Med. 49, 372-379 (2017). https://doi.org/10.1002/lsm.22615