DOI QR코드

DOI QR Code

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Jung, Unsang (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Suhwan (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Jung, Woonggyu (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Oh, Junghwan (Department of Biomedical Engineering, Pukyong National University) ;
  • Kang, Hyun Wook (Department of Biomedical Engineering, Pukyong National University) ;
  • Kim, Jeehyun (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • Received : 2012.11.01
  • Accepted : 2013.01.28
  • Published : 2013.02.25

Abstract

We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker Inc., New York, USA, 2002).
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). https://doi.org/10.1088/0034-4885/66/2/204
  4. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Select. Topics Quantum Electron. 5, 1205- 1215 (2007).
  5. J. Kim, B.-S. Sohn, and T. E. Milner, "Real-time retinal imaging with a parallel optical coherence tomography using a CMOS smart array detector," J. Korean Phys. Soc. 51, 1787-1791 (2007). https://doi.org/10.3938/jkps.51.1787
  6. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). https://doi.org/10.1364/OL.32.002918
  7. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652- 10664 (2005). https://doi.org/10.1364/OPEX.13.010652
  8. M. Jeon, U. Jung, J.-W. Song, J. Kim, J. Oh, J. Eom, C.-S. Kim, and Y.-H. Park, "Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk," J. Opt. Soc. Korea 13, 330-334 (2009). https://doi.org/10.3807/JOSK.2009.13.3.330
  9. K. Zhang and J. U. Kang, "Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance," Opt. Express 2, 764-770 (2011). https://doi.org/10.1364/BOE.2.000764
  10. K. Zhang and J. U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express 18, 11772-11784 (2010). https://doi.org/10.1364/OE.18.011772
  11. K. Zhang and J. U. Kang, "Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahighspeed, real-time Fourier-domain OCT," Opt. Express 18, 23472-23487 (2010). https://doi.org/10.1364/OE.18.023472
  12. H. Jeong, N. H. Cho, U. Jung, C. Lee, J.-Y. Kim, and J. Kim, "Ultra-fast displaying spectral domain optical Doppler tomography system using a graphics processing unit," Sensors 12, 6920-6929 (2012). https://doi.org/10.3390/s120606920
  13. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, "Full-range k-domain linearization in spectral-domain optical coherence tomography," Appl. Opt. 50, 1158-1163 (2011). https://doi.org/10.1364/AO.50.001158
  14. U. Jung, N. H. Cho, S. Kim, H. Jeong, J. Kim, and Y. C. Ahn, "Simple spectral calibration method and its application using an index array for swept source optical coherence tomography," J. Opt. Soc. Korea 15, 386-393 (2011). https://doi.org/10.3807/JOSK.2011.15.4.386
  15. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography," Circulation 107, 113-119 (2003). https://doi.org/10.1161/01.CIR.0000044384.41037.43

Cited by

  1. Parallel computing in experimental mechanics and optical measurement: A review (II) 2017, https://doi.org/10.1016/j.optlaseng.2017.06.002
  2. Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.055
  3. Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.151
  4. Structural Analysis of Polymer Composites Using Spectral Domain Optical Coherence Tomography vol.17, pp.6, 2017, https://doi.org/10.3390/s17051155
  5. In vivo 3D imaging of the human tympanic membrane using a wide-field diagonal-scanning optical coherence tomography probe vol.56, pp.9, 2017, https://doi.org/10.1364/AO.56.00D115
  6. High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging vol.55, pp.26, 2016, https://doi.org/10.1364/AO.55.007212
  7. High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU vol.34, pp.3, 2013, https://doi.org/10.9718/JBER.2013.34.3.135
  8. Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs vol.14, pp.12, 2014, https://doi.org/10.3390/s140202171
  9. Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy vol.6, pp.12, 2015, https://doi.org/10.1364/BOE.6.004650
  10. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy vol.19, pp.7, 2014, https://doi.org/10.1117/1.JBO.19.7.071410
  11. Graphics processing unit-based quantitative second-harmonic generation imaging vol.19, pp.9, 2014, https://doi.org/10.1117/1.JBO.19.9.096009
  12. In Vivo Vibration Measurement of Middle Ear Structure Using Doppler Optical Coherence Tomography: Preliminary Study pp.2005-0720, 2018, https://doi.org/10.21053/ceo.2018.00185