• 제목/요약/키워드: high etch rate

검색결과 229건 처리시간 0.026초

HDP를 이용한 실리콘 단결정 Deep Dry Etching에 관한 특성 (Characterization of Deep Dry Etching of Silicon Single Crystal by HDP)

  • 박우정;김장현;김용탁;백형기;서수정;윤대호
    • 한국세라믹학회지
    • /
    • 제39권6호
    • /
    • pp.570-575
    • /
    • 2002
  • 현재 전기 . 전자 기술의 추세는 소형화를 비롯하여 집적화, 저전력화, 저가격화의 장점을 가진 MEMS(Micro Electro Mechanical Systems) device의 개발에 주력하고 있으며, 이를 위해서는 고종횡비와 높은 식각 속도를 가진 HDP(High Density Plasma) etching 기술 개발이 필수적이라 할 수 있다. 이를 위하여 우리는 Inductively Coupled Plasma(ICP) 장비를 이용하여 각 공정 변수에 의한 실리콘 deep trench식각 반응을 연구하였다. 실험 공정 변수인 platen power, etch/passivation cycle time에서 etching 단계 시간에 따른 변화와 SF$_{6}$:C$_4$F$_{8}$ 가스유량을 변화시켜 연구하였으며 또한 이들의 profile, scallops, 식각 속도, 균일도, 선택비도 관찰하였다.

A Reproducible High Etch Rate ICP Process for Etching of Via-Hole Grounds in 200μm Thick GaAs MMICs

  • Rawal, D.S.;Agarwal, Vanita R.;Sharma, H.S.;Sehgal, B.K.;Muralidharan, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권3호
    • /
    • pp.244-250
    • /
    • 2008
  • An inductively coupled plasma etching process to replace an existing slower rate reactive ion etching process for $60{\mu}m$ diameter via-holes using Cl2/BCl3 gases has been investigated. Process pressure and platen power were varied at a constant ICP coil power to reproduce the RIE etched $200{\mu}m$ deep via profile, at high etch rate. Desired etch profile was obtained at 40 m Torr pressure, 950 W coil power, 90W platen power with an etch rate ${\sim}4{\mu}m$/min and via etch yield >90% over a 3-inch wafer, using $24{\mu}m$ thick photoresist mask. The etch uniformity and reproducibility obtained for the process were better than 4%. The metallized via-hole dc resistance measured was ${\sim}0.5{\Omega}$ and via inductance value measured was $\sim$83 pH.

MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가 (Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application)

  • 최기용;최덕균;박지연;김태송
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses

  • Choi, Jae Ho;Han, Yoon Soo;Lee, Sung Min;Park, Hyung Bin;Choi, Sung Churl;Kim, Hyeong Jun
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.700-706
    • /
    • 2016
  • Etch rate, surface roughness and microstructure as plasma resistance were evaluated for six kinds of oxide glass with different compositions. Borosilicate glass (BS) was found to be etched at the highest etch rate and zinc aluminum phosphate glass (ZAP) showed a relatively lower etch rate than borosilicate. On the other hand, the etching rate of calcium aluminosilicate glass (CAS) was measured to be similar to that of sintered alumina while yttrium aluminosilicate glass (YAS) showed the lowest etch rate. Such different etch rates by mixture plasma as a function of glass compositions was dependent on whether or not fluoride compounds were formed on glass and sublimated in high vacuum. Especially, in view that $CaF_2$ and $YF_3$ with high sublimation points were formed on the surface of CAS and YAS glasses, both CAS and YAS glasses were considered to be a good candidate for protective coating materials on the damaged polycrystalline ceramics parts in semi-conductor and display processes.

$BCl_3$ 기반의 혼합 가스들을 이용한 InP 고밀도 유도결합 플라즈마 식각 (High Density Inductive Coupled Plasma Etching of InP in $BCl_3$-based chemistries)

  • 조관식;임완태;백인규;이제원;전민현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.75-79
    • /
    • 2003
  • We studied InP etch results in high density planar inductively coupled $BCl_3$ and $BCl_3$/Ar plasmas. The investigated process parameters were ICP source power, RIE chuck power, chamber pressure and $BCl_3$/Ar gas composition. It was found that increase of ICP source power and RIE chuck power raised etch rate of InP, while that of chamber pressure decreased etch rate. Etched InP surface was clean and smooth (RMS roughness < 2 nm) with a moderate etch rate ($300\;{\sim}\;500\;{\AA}/min$) after the planar $BCl_3/Ar$ ICP etching. It may make it possible to open a new regime of InP etching with $CH_4/H_2$ - free plasma chemistry. Some amount of Ar addition (< 50%) also improved etch rates of InP, while too much Ar addition reduced etch rates of InP.

  • PDF

Newly Designed Ion Beam Etcher with High Etch Rate

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.366-370
    • /
    • 2015
  • New ion beam etcher (IBE) using a magnetized inductively coupled plasma (M-ICP) has been developed. The magnetic flux density distributions inside the upper chamber, where the plasma is generated by inductive coupling, were successfully optimized by arranging a pair of circular coils very carefully. More importantly, the proposed M-ICP IBE exhibits higher etch rate than ICP.

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • 전민환;강세구;박종윤;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

유도결합 플라즈마를 이용한 $Al_2O_3$ 식각 특성 (The etching properties of $Al_2O_3$ thin films in $N_2/Cl_2/BCl_3$ and Ar/$Cl_2/BCl_3$ gas chemistry)

  • 구성모;김동표;김경태;김창일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.72-74
    • /
    • 2004
  • In this study, we used a inductively coupled plasma (ICP) source for etching $Al_2O_3$ thin films because of its high plasma density, low process pressure and easy control bias power. $Al_2O_3$ thin films were etched using $Cl_2/BCl_3$, $N_2/Cl_2/BCl_3$, and Ar/$Cl_2/BCl_3$ plasma. The experiments were carried out measuring the etch rates and the selectivities of $Al_2O_3$ to $SiO_2$ as a function of gas mixing ratio, rf power, and chamber pressure. When $Cl_2$ 50% was added to $Cl_2/BCl_3$ plasma, the etch rate of the $Al_2O_3$ films was 118 nm/min. We also investigated the effect of gas addition. In case of $N_2$ addition, the etch rate of the $Al_2O_3$ films decreased while $N_2$ was added into $Cl_2/BCl_3$ plasma. However, the etch rate increased slightly as Ar added into $Cl_2/BCl_3$ plasma, and then further increase of Ar decreased the etch rate. The maximum etch rate was 130 nm/min at Ar 20% in $Cl_2/BCl_3$ plasma, and the highest etch selectivity was 0.81 in $N_2$ 20% in $Cl_2/BCl_3$ plasma. And, we obtained the results that the etch rate increases as rf power increases and chamber pressure decreases. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES).

  • PDF

$Ar/Cl_{2}/CF_{4}$ 코밀도 플라즈마를 이용한 강유전체 $YMnO_3$의 건식식각 특성연구 (Dry Etch Characteristic of Ferroelectric $YMnO_3$ Thin Films Using High Density $Ar/Cl_{2}/CF_{4}$ $PAr/Cl_{2}/CF_{4}$)

  • 박재화;김창일;장의구;이철인;이병기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.213-216
    • /
    • 2001
  • Etching behaviors of ferroelectric YMn $O_3$ thin films were studied by an inductively coupled plasma (ICP). Etch characteristic on ferroelectric YMn $O_3$ thin film have been investigated in terms of etch rate, selectivity and etch profile. The maximum etch rate of YMn $O_3$ thin film is 300 $\AA$/min at Ar/C $l_2$ of 2/8, RF power of 800W, dc bias voltage of 200V, chamber pressure of 15mTorr and substrate temperature of 3$0^{\circ}C$. Addition of C $F_4$ gas decrease the etch rate of YMn $O_3$ thin film. From the results of XPS analysis, Y $F_{X}$ compunds were found on the surface of YMn $O_3$ thin film which is etched in Ar/C1/C $F_4$ plasma. The etch profile of YMn $O_3$ film is improved by addition of C $F_4$ gas into the Ar/C $l_2$ plasma. These results suggest that fluoride yttrium acts as a sidewall passivants which reduce the sticking coefficient of chlorine on YMn $O_3$.>.

  • PDF