• Title/Summary/Keyword: hemispherical shell

Search Result 16, Processing Time 0.01 seconds

An Experimental Study on the Quenching Phenomena of Hemispherical Downward Facing Convex Surfaces with Narrow Gaps (반구형 소형 간극 내에서의 냉각과정에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Sang-Baik;Cho, Young-Ro;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.447-452
    • /
    • 2001
  • Quenching phenomena of hemispherical downward facing convex surfaces with narrow gaps have been investigated experimentally. Experiments employed test sections having 1 and 2 mm in gap thickness and 1 atm in system pressure. From interpretations of the temperature and the heat flux history, it was found that the flooding inside the gap was restricted by CCFL phenomena and quenching process was propagated from lower to upper region of the internal copper shell. The ratio of the maximum heat fluxes at 1 mm to 2mm in gap thickness was the almost same that obtained by steady state experiments. The quenching scenario of the hemispherical downward facing surface with narrow gap has been suggested.

  • PDF

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Benchmark tests of MITC triangular shell elements

  • Jun, Hyungmin;Mukai, Paul;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.17-38
    • /
    • 2018
  • In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

Optimal Design of Metallic Sandwich Plates with Inner Dimpled Shell Subjected to 3-Point Bending (굽힘 하중을 받는 딤플형 금속 샌드위치판재의 최적설계)

  • Seong D.Y.;Jung C.G.;Yoon S.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.702-705
    • /
    • 2005
  • Metallic sandwich plates with Inner dimpled shell subjected to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high quality precision and bonded with same material skin sheets by resistance welding or adhesive bonding process. Optimized shape of inner dimple is a hemispherical shell to minimize weight without failure, including face yielding, face buckling and inner dimple buckling. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times than solid plates with same strength

  • PDF

Frequency analysis of eccentric hemispherical shells with variable thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.245-261
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of eccentric hemi-spherical shells of revolution with variable thickness. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\Theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Potential and kinetic energies of eccentric hemi-spherical shells with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to three or four-digit exactitude is demonstrated for the first five frequencies of the shells. Numerical results are presented for a variety of eccentric hemi-spherical shells with variable thickness.

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.