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1. Introduction 

The shell structures have been studied steadily 

in aerospace engineering fields. Especially, as a 

high precision gyroscope, resonating gyros 

became one of the intriguing subjects. Fox[1] 

investigated imperfection as an unbalancing factor 

on a circular ring. Also, Hwang[2] presented 

experimental results of vibrations on hemi-

spherical shell and compared to analytical data. 

Zhuravlev[3] studied imperfect shell of which 

density varies with periodic manners thorough 

circumferential angle. In this study, mathematical 

model of imperfect hemispherical shell by using 

point mass elements is presented by using energy 

relations of inextensional vibration of the shell. 

2. Formulations 

2.1 Imperfections due to point masses 
In this section, mathematical model of effects of 

point masses on the shell is formulated. The 

natural frequency of the system is determined by 

using Rayleigh’ s energy method for bending 

mode of vibration. 

The maximum kinetic and strain energy for the 

system can be expressed as 
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where and denote kinetic and strain energy 

respectively. Also, subscripts such as  and 

K U
,  0T

M represent terms with respect to total system, 

perfect shell, and point mass, respectively. 

Applying Rayleigh’ s procedure onto Eq. (1), the 

natural frequency of the system can be deter-

mined as[2] 
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where 0ω  and nω denote the natural frequency of 

symmetric shell, and of imperfect shell, respect-

tively. The natural frequency of symmetric shell 

can be determined by using Rayleigh’ s energy 

method. Further, assuming that the shell has 

bending mode, and with free boundary conditions, 

the kinetic energy of point masses can be 

expressed as 
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where ,  ,  ,  ,D m a ρ and  denote magnitude of local 

displacement, point mass, radius of the shell and 

thickness of the shell, respectively. The subscript 

 denotes the number of point masses. Then, 

substituting Eq. (3) into Eq. (2) results the natural 

frequency as Eq. (4) The shift angle of mode 

orientation can be determined by the knowledge 

that the natural frequencies will be stationary 

for

h

i

ζ , and be expressed as[2] in Eq. (5) 
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H and L denote split of the natural frequen- 
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cies that the shape of H-mode has its node on 

the point mass and of L-mode has its anti-node 

on the point mass. Additionally, normalized 

frequency can be defined by following relation. 

, 0

0 0

H L n
norm

ω ω ωω
ω ω
− Δ

= =  (7)

Also, the normalized mass can be defined by 
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3. Results and discussions 

 

The results for single point mass model are 

presented in this section. The point mass is 

located on the 0 deg. of circumferential angle, and 

90 deg. of meridian angle. Fig. 1 and Fig. 2 show 

the normalized natural frequencies for each H- 

and L-mode. As shown in figures, changing mode 

number and weight of point mass affect directly to 

the split of natural frequencies. The split amount 

for L-mode is relatively larger than for H-mode, 

and as mode number increases, the split of H-

mode decreases while for L-mode increases. This 

means the split frequencies for H-mode is very 

close to the natural frequencies of symmetric 

shell. 

4. Conclusions 

The mathematical model of imperfect hemi-

spherical shell is presented by using Rayleigh’ s 

energy method and using energy relations. 

Through this study, the unbalanced vibration of 

manufactured gyroscope can be expressed analy-

tically. The imperfect vibration of the shell can be 

 
Fig. 1 Normalized frequencies for H-mode 

 
Fig. 2 Normalized frequencies for L-mode 

 

mathematically modeled by using finite number of 

point masses, and further study will consider tri-

mming mechanism. 
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