• 제목/요약/키워드: harmonic potential

Search Result 186, Processing Time 0.027 seconds

CONFORMAL MAPPING AND CLASSICAL KERNEL FUNCTIONS

  • CHUNG, YOUNG-BOK
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.195-203
    • /
    • 2005
  • We show that the exact Bergman kernel function associated to a $C^{\infty}$ bounded domain in the plane relates the derivatives of the Ahlfors map in an explicit way. And we find several formulas relating the exact Bergman kernel to classical kernel functions in potential theory.

  • PDF

The K-band Oscillator using Split Ring Resonator (Split Ring 공진기를 이용한 K-Band Oscillator)

  • Han-Kee Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 1997
  • In this paper, a 23 GHz push-push oscillator was designed and fabricated for 23 GHz point-to-point communication using split ring resonator. The split ring resonator was equivalent circuit and numerical method of MPIE(Mixed Potential Integral Equation). The analysis of split ring resonator which coupled between microstrip lines was carried out with transmission-mode using this results. The fabricated oscillator showed the output power of 4 dBm, the 1'st harmonic suppression of -20 dBc, the 3rd harmonic suppression of -34 dBc, a SSB phase noise of -109 dBc / Hz at 1MHz offset frequency from the carrier was achieved and 1.4 percents efficiency at 23 GHz. The experimental outputs were in good results with the theoretical and simulated results.

  • PDF

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential

  • Jin, Ping;Yuan, Yue;Lin, Heyun;Fang, Shuhua;Ho, S.L.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Mondal, Chandan Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1279-1287
    • /
    • 2019
  • The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.

Eddy Current Loss Analysis of Slotless Double-sided Cored Type Permanent Magnet Generator by using Analytical Method (해석적 방법을 이용한 슬롯리스 양측식 코어드 타입 영구자석 발전기의 와전류 손실 해석)

  • Jang, Gang-Hyeon;Jung, Kyoung-Hun;Hong, Keyyong;Kim, Kyong-Hwan;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1639-1647
    • /
    • 2016
  • This paper deals with eddy current loss analysis of Slotless Double sided Cored type permanent magnet linear generator by using analytical method, space harmonic method. In order to calculate eddy current, this paper derives analytical solution by the Maxwell equation, magnetic vector potential, Faraday's law and a two-dimensional(2-D) cartesian coordinate system. First, we derived the armature reaction field distribution produced by armature wingding current. Second, by using derived armature reaction field solution, the analytical solution for eddy current density distribution are also obtained. Finally, the analytical solution for eddy current loss induced in permanent magnets(PMs) are derived by using equivalent, electrical resistance calculated from PMs volume and eddy current density distribution solution. The analytical result from space harmonic method are validated extensively by comparing with finite element method(FEM).

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.

On the Surge Motion of a Freely-Floating Sphere in a Plane Progressive Wave (규칙파(規則波)에 놓인 구(球)의 수평운동(水平運動)에 대(對)한 해석(解析))

  • Chan-Wook,Park;Hang-Shoon,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 1981
  • The surge motion of a freely-floating sphere in a regular wave is studied within the framework of a linear potential theory. The fluid is assumed to be perfect and only the steady-state harmonic motion in a water of infinite depth is considered. A velocity potential describing the fluid motion is decomposed into three parts; the incident wave potential, the diffraction potential and the radiation potential. In this paper the diffraction potential and the radiation potential are analysed by using multipole expansion method. Upon calculating pressures over the immersed surface of the sphere, the hydrodynamic forces are evaluated in terms of Froude-Krylov, diffraction, added mass and damping forces as functions of the frequency of the incident wave. Finally the frequency dependence of two pertinent parameters, the amplitude ratio and the phase lag between the motion of the sphere and that of the incident wave is derived from the equation of motion. As for numerical results the general tendency of the present calculation shows good agreement with Kim's work who also treated this problem utilizing the Green's function method.

  • PDF

Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain

  • Sharma, Nidhi;Kumar, Rajneesh;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.19-38
    • /
    • 2008
  • A general solution to the field equations of homogeneous isotropic generalized thermoelastic diffusion with two relaxation times (Green and Lindsay theory) has been obtained using the Fourier transform. Assuming the disturbances to be harmonically time.dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed loads have been considered to show the utility of the solution obtained. The transformed components of displacement, stress, temperature distribution and chemical potential distribution are inverted numerically, using a numerical inversion technique. Effect of diffusion on the resulting expressions have been depicted graphically for Green and Lindsay (G-L) and coupled (C-T) theories of thermoelasticity.

Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method

  • Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.35-48
    • /
    • 2018
  • In this paper, the response of a sandwich cylindrical shell over any sort of boundary conditions and under a general distributed static loading is investigated. The faces and the core are made of some isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff-Love assumptions. For the core material it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM) the equations are solved for deformation components. The obtained results primarily are compared against finite element results. Then, the effects of changing different parameters on the stress and displacement components of sandwich cylindrical shells are investigated.