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Abstract. The main purpose of the paper is to prove that if a compact
Riemannian manifold admits a gradient ρ-Einstein soliton such that the

gradient Einstein potential is a non-trivial conformal vector field, then

the manifold is isometric to the Euclidean sphere. We have showed that
a Riemannian manifold satisfying gradient ρ-Einstein soliton with convex

Einstein potential possesses non-negative scalar curvature. We have also
deduced a sufficient condition for a Riemannian manifold to be compact

which satisfies almost η-Ricci soliton.

1. Introduction

In 1982, Hamilton [14] introduced the notion of Ricci flow in a Riemannian
manifold (M, g0) to find the various geometric and topological structures of
Riemannian manifolds. The Ricci flow is defined by an evolution equation for
metrics on (M, g0):

∂

∂t
g(t) = −2Ric, g(0) = g0.

A Ricci soliton on a Riemannian manifold (M, g) is a generalization of Einstein
metric and is defined as

(1) Ric+
1

2
LXg = λg, e,

where X is a smooth vector field on M , L denotes the Lie-derivative operator
and λ ∈ R. Ricci almost solitons, which were introduced by Pigola et al. [17],
correspond to self-similar solutions of the Ricci-Bourguignon flow, as it was
showed by M. Brozos-Vazquez et al. in [6]. Moreover, it is well known that they
can be seen as conformal solution of the Ricci flow. Some examples and rigidity
results were obtained in several papers in the last 7 years, as for instance, by
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Pigola et al. [17], Barros et al. in [3,4], Calvino-Louzao et al. in [7], R. Sharma in
[18], Catino et al. [10] and many other works. Ricci soliton is called shrinking,
steady or expanding according as λ > 0, λ = 0 or λ < 0, respectively. The
vector field X is called the potential vector field of the Ricci soliton. If X is
either Killing or vanishing vector field, then Ricci soliton is called trivial Ricci
soliton and (1) reduces to an Einstein metric. If X becomes the gradient of
a smooth function f ∈ C∞(M), the ring of smooth functions on M , then the
Ricci soliton is called gradient Ricci soliton and (1) reduces to the form

(2) Ric+∇2f = λg,

where ∇2f is the Hessian of f . Perelman [15] showed that Ricci soliton on any
complete manifold is always a gradient Ricci soliton. If we replace the constant
λ in (1) with a smooth function λ ∈ C∞(M), called soliton function, then we
say that (M, g) is an almost Ricci soliton, see ([3, 4, 17]).

Almost gradient Ricci soliton motivated Catino [8] to introduce a new class
of Riemannian metrics which is a natural generalization of Einstein metrics.
In particular, a Riemannian manifold (Mn, g), n ≥ 2, is called a generalized
quasi-Einstein manifold if there are smooth functions f, λ and µ on M such
that

Ric+∇2f = λg + µdf ⊗ df.
Cho and Kimura [12] further generalized the notion of Ricci soliton and devel-
oped the concept of η-Ricci soliton. If a Riemannian manifold M satisfies

Ric+
1

2
LXg = λg + µη ⊗ η

for some constant λ and µ, then M is said to admit an η-Ricci soliton with
soliton vector field X. A further generalization is the notion of almost η-Ricci
soliton defined by Blaga [5].

Definition ([5]). A complete Riemannian manifold (M, g) is said to satisfy
almost η-Ricci soliton if there exists a smooth vector field X ∈ X(M), the
algebra of smooth vector fields on M , such that

(3) Ric+
1

2
LXg = λg + µη ⊗ η,

where λ and µ are smooth functions on M and η is an 1-form on M .

If X is the gradient of f ∈ C∞(M), then (M, g) is called a gradient almost
η-Ricci soliton. Hence (3) reduces to the form

(4) Ric+∇2f = λg + µη ⊗ η.

Instead of Ricci flow, Catino and Mazzieri [11] considered the following gradient
flow

(5)
∂

∂t
g(t) = −2(Ric− 1

2
Rg),
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and introduced the concept of gradient Einstein soliton in a Riemannian man-
ifold, where R is the scalar curvature of the manifold.

Definition ([11]). A Riemannian manifold (M, g) of dimension n is said to be
the gradient Einstein Ricci soliton if

Ric− 1

2
Rg +∇2f = λg

for some function f ∈ C∞(M) and some constant λ ∈ R.

A more general type gradient Einstein soliton has been deduced by consid-
ering the following Ricci-Bourguignon flows [9]:

∂

∂t
g(t) = −2(Ric− ρRg),

where ρ is a real non-zero constant.

Definition ([11]). A Riemannian manifold (M, g) of dimension n ≥ 3 is said
to be the gradient ρ-Einstein Ricci soliton if

Ric+∇2f = λg + ρRg, ρ ∈ R, ρ 6= 0

for some function f ∈ C∞(M) and some constant λ ∈ R. The function f is
called Einstein potential. The gradient ρ-Einstein soliton is called expanding
if λ < 0, steady if λ = 0 and shrinking if λ > 0.

The paper is arranged as follows: Section 2 discusses some basic concepts
of Riemannian manifold and some definitions, which are needed for the rest
of the paper. Section 3 deals with the study of almost η-Ricci soliton in a
complete Riemannian manifold and provides a proof of the statement saying
that in a compact manifold the potential of such soliton turns into the Hodge-
de Rham potential, up to a constant. In this section, we have also deduced
a sufficient condition for a Riemannian manifold admitting an almost η-Ricci
soliton structure to be compact. In the last section, as the main result of the
paper, we will prove that a compact Riemannian manifold satisfying a gradient
ρ-Einstein soliton with gradient of Einstein potential as a conformal vector field,
is isometric to the Euclidean sphere. In this section, we have also studied some
properties of gradient ρ-Einstein soliton in a complete Riemannian manifold.
Among others it will be proved that if (M, g) is a compact gradient ρ-Einstein
soliton with ρ as non-positive real number and gradient of the Einstein potential
is a conformal vector field, then such soliton can not be expanding.

2. Preliminaries

Let M be a complete Riemannian manifold of dimension n endowed with
some positive definite metric g unless otherwise stated. In this section, we have
discussed some rudimentary facts of M (for reference see [16]). The tangent
space at the point p ∈M is denoted by TpM . The geodesic with initial point p
and final point q is denoted by γpq. A smooth section of the tangent bundle TM
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is called a smooth vector field. The gradient of a smooth function u : M → R
at the point p ∈M is defined by ∇u(p) = gij ∂u∂xj

∂
∂xi |p . It is the unique vector

field such that any smooth vector field X in M satisfies g(∇u,X) = X(u).
The Hessian Hess(u) is the symmetric (0, 2)-tensor field and is defined by
∇2u(X,Y ) = Hess(u)(X,Y ) = g(∇X∇u, Y ) for all smooth vector fields X,Y
of M . In local coordinates this can be written as

(∇2u)ij = ∂iju− Γkij∂ku,

where Γkij is the Christoffel symbol of g. For any vector field X ∈ X(M) and a
covariant tensor field ω of order r on M , the Lie derivative of ω with respect
to X is defined by

(LXω)(X1, . . . , Xr) = X(ω(X1, . . . , Xr))−
r∑
i=1

ω(X1, . . . , [X,Xi], . . . , Xn),

where Xi ∈ χ(M) for i = 1, . . . , r. In particular, when ω = g, then

(LXg)(Y,Z) = g(∇YX,Z) + g(Y,∇ZX) for Y,Z ∈ X(M).

Given a vector field X, the divergence of X is defined by

div(X) =
1
√
g

∂

∂xj
√
gXj ,

where g = det(gij) and X = Xj ∂
∂xj . The Laplacian of u is defined by ∆u =

div(∇u).

3. Some results of almost η-Ricci soliton in a compact Riemannian
manifold

Let M be a compact orientable Riemannian manifold and X ∈ X(M) a
vector field on M . Then Hodge-de Rham decomposition theorem [2] implies
that X can be expressed as

X = ∇h+ Y,

where h ∈ C∞(M) and div(Y ) = 0. In particular, the function h is called the
Hodge-de Rham potential [4]. Now, we may state our first result as follows.

Theorem 3.1. Let (Mn, g,X, λ) be a compact gradient almost η-Ricci soliton.
If M is also a gradient almost η-Ricci soliton with potential function f , then,
up to a constant, f is equal to the Hodge-de Rham potential.

Proof. Since (M, g,X, λ) is a compact almost η-Ricci soliton, so taking trace
of (3), we get

R+ div(X) = λn+ tr(µη ⊗ η).

Now Hodge-de Rham decomposition implies that div(X) = ∆h, hence from
the above equation, we obtain

R = λn−∆h+ tr(µη ⊗ η).
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Again since M is gradient almost η-Ricci soliton with Perelman potential f ,
taking trace of (4), we have

R = λn−∆f + tr(µη ⊗ η).

Combining the last two equations we get ∆(f − h) = 0. Hence f − h is a
harmonic function in M . Since M is compact, we have f = h + c for some
constant c. This finishes the proof of the theorem. �

Theorem 3.2. Let (M, g) be a complete Riemannian manifold satisfying

(6) Ric+
1

2
Lg ≥ λg + µη ⊗ η,

where X is a smooth vector field, µ and λ are smooth functions and η is an 1-
form. Then M is compact if ‖X‖ is bounded and one of the following conditions
holds:

(i) λ ≥ 0 and µ > c > 0,
(ii) λ > c > 0 and µ ≥ 0

for some constant c.

Proof. Let p ∈M be a fixed point and γ : [0,∞)→M be a geodesic ray such
that γ(0) = p. Then along γ we calculate

LXg(γ′, γ′) = 2g(∇γ′X, γ′) = 2
d

dt
[g(X, γ′)].

This data jointly with (6) yields∫ T

0

Ric(γ′, γ′)dt ≥
∫ T

0

λ(γ(t))g(γ′, γ′)dt−
∫ T

0

d

dt
[g(X, γ′)]dt

+

∫ T

0

µ(γ(t))(η ⊗ η)(γ′, γ′)dt

=

∫ T

0

λ(γ(t))dt+ g(Xp, γ
′(0))− g(Xγ(T ), γ

′(T ))

+

∫ T

0

µ(γ(t))η2(γ′)dt

≥
∫ T

0

λ(γ(t))dt+ g(Xp, γ
′(0))− ‖Xγ(T )‖

+

∫ T

0

µ(γ(t))η2(γ′)dt.

The last inequality follows by Cauchy-Schwarz inequality. If any one of the
conditions (i) or (ii) holds, then above inequality implies∫ ∞

0

Ric(γ′, γ′)dt =∞.
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Hence Ambrose’s compactness theorem [1] implies that M is compact, which
finishes the proof of the theorem. �

4. Gradient ρ-Einstein soliton in a compact Riemannian manifold

We start this section recalling a sphere theorem obtained by Yano in [19],
which is going to use the proof of our next result. More preciously, Yano proved
the following result. Throughout this section M is a complete Riemannian
manifold with dimension n ≥ 2.

Theorem 4.1 ([19, Yano]). Let (Mn, g) be a compact Riemannian manifold
with constant scalar curvature. Suppose that M admits a non-trivial conformal
vector field X. If LXRic = αg for some α ∈ C∞(M), then M is isometric to
the Euclidean sphere Sn.

Let (M, g) be a gradient ρ-Einstein soliton. Then

Ric+∇2f = ρRg + λg.

If ∇f is a conformal vector field, then ∇2f = ψg for some ψ ∈ C∞(M).
Therefore above equation reduces to the form

(7) Ric = (ρR+ λ− ψ)g.

Hence Ricci curvature depends only on the points of M . Then it follows from
Schur’s lemma that R is constant. Again by taking X = ∇f , we have

LXRic = (ρR+ λ− ψ)LXg = (ρR+ λ− ψ)ψg.

Therefore, it follows by Theorem 4.1 the following result.

Theorem 4.2. Let (M, g) be a compact gradient ρ-Einstein soliton with Ein-
stein potential f . If ∇f is a non-trivial conformal vector field, then M is
isometric to the Euclidean sphere Sn.

Theorem 4.3 ([19]). If M is compact with constant scalar curvature and ad-
mits a non-trivial conformal vector field X: LXg = 2ψg, ψ 6= 0, then∫

M

ψdV = 0.

Taking the trace in (7), we get

R = n(ρR+ λ− ψ),

which implies that ∫
M

(1− nρ)R = n

∫
M

(λ− ψ).

If X is a conformal vector field and M has constant scalar curvature, then
applying Theorem 4.3 we get

(8) R

∫
M

(1− nρ) = n

∫
M

λ.



η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON 1285

Now if λ < 0, then the above equation becomes

R

∫
M

(1− nρ) < 0.

If M is compact, then Theorem 4.2 implies that M is isometric to Sn. Since
isometry preserves scalar curvature, so R > 0. Therefore, the above equation
guarantees

(9) V ol(M) < n

∫
M

ρ.

This computations allow us to infer the following result.

Theorem 4.4. Let (M, g) be a compact gradient ρ-Einstein soliton with Ein-
stein potential f and ρ ≤ 0. If ∇f is a conformal vector field, then M is either
shrinking or steady gradient ρ-Einstein soliton.

Lemma 4.5 ([11]). Let (M, g) be a gradient ρ-Einstein Ricci soliton with Ein-
stein potential f . Then we have

(10) ∆f = −(1− nρ)R+ nλ.

The following results are about the effect of scalar curvature on Einstein
potential function in ρ-Einstein Ricci soliton.

Proposition 4.6. Suppose (M, g) is an expanding or steady gradient ρ-Einstein
Ricci soliton with Einstein potential f and nρ > 1. If f is a convex function,
then M has non-negative scalar curvature.

Proof. The convexity of f implies that f is subharmonic [13], i.e., ∆f ≥ 0.
Therefore (10) implies that

(1− nρ)R− nλ ≤ 0.

Now take 1− nρ = −h, where h > 0 is a real constant. Then we obtain

(11) R ≥ −nλ
h
.

Since M is expanding or steady, so λ ≤ 0. Thus we can conclude from (11)
that R ≥ 0. �

The following can be easily derived from (10):

Proposition 4.7. Suppose (M, g) is a steady gradient ρ-Einstein Ricci soliton
with Einstein potential f and nρ > 1. If f is a harmonic function, then the
scalar curvature of M vanishes.

Integrating (8) on M , we get

R(1− nρ)V ol(M) = nλV ol(M),

which yields

R =
nλ

1− nρ
.
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If R > 0, then nλ > 1− nρ, i.e., ρ > 1
n (1− nλ). Thus Theorem 4.2 implies the

following:

Proposition 4.8. Let (M, g) be a compact gradient ρ-Einstein soliton with
Einstein potential f . If ∇f is a non-trivial conformal vector field, then ρ
satisfies

ρ >
1

n
(1− nλ).
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