Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.2.095

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential  

Jin, Ping (Department of Energy and Electrical Engineering, Hohai University)
Yuan, Yue (Department of Energy and Electrical Engineering, Hohai University)
Lin, Heyun (Servo Control Engineering Center of Education Ministry, Southeast University)
Fang, Shuhua (Servo Control Engineering Center of Education Ministry, Southeast University)
Ho, S.L. (Department of Electrical Engineering, Hong Kong Polytechnic University)
Publication Information
Abstract
This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.
Keywords
halbach magnet array; magnetic scalar potential; synthetic boundary condition; harmonic analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Halbach, Nucl. Instrum. Meth. 169, 1 (1980).   DOI   ScienceOn
2 Z. Q. Zhu, in Proc. Power Conversion Conf. Nagoya, Japan, K9 (2007).
3 K. Atallah and D. Howe, IEEE Trans. Magn. 34, 2060 (1998).   DOI   ScienceOn
4 T. Mizuno and H. Yamada, IEEE Trans. Magn. 28, 3027 (1992).   DOI   ScienceOn
5 R. E. Clark, D. S. Smith, P. H. Mellor, and D. Howe, IEEE Trans. Magn. 31, 3746 (1995).   DOI   ScienceOn
6 T. Mizuno and H. Yamada, EEE Trans. Magn. 28, 3027 (1992).   DOI   ScienceOn
7 K. F. Rasmussen, H. D. John, T. J. E. Miller, M. I. McGilp, and O. Mircea, IEEE Trans. Magn. 36, 1547 (2000).
8 Z. Q. Zhu, Z. P. Xia, and D. Howe, IEEE Trans. Magn. 38, 2997 (2002).   DOI   ScienceOn
9 N. Boules, IEEE Trans. Ind. Appl. 20, 1267 (1984).
10 N. Boules, IEEE Trans. Ind. Appl. 26, 786 (1990).   DOI   ScienceOn
11 Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, IEEE Trans. Magn. 29, 124 (1993).   DOI   ScienceOn
12 Z. Q. Zhu, David Howe, and C. C. Chan, IEEE Trans. Magn. 38, 229 (2002).   DOI   ScienceOn
13 H. Wijono, H. Arof, and W. Ping, IET Electr. Power Appl. 4, 629 (2010).   DOI   ScienceOn
14 D. L. Trumper, W. J. Kim, and M. E. Williams, IEEE Trans. Ind. Appl. 32, 371 (1996).   DOI   ScienceOn
15 M. G. Lee, S. Q. Lee, and D. G. Gweon, Mechatronics 14, 115 (2004).   DOI   ScienceOn
16 J. B. Wang and D. Howe, IEEE Trans. Magn. 41, 2470 (2005).   DOI   ScienceOn
17 J. B. Wang, D. Howe, and G. W. Jewell, IEEE Trans. Magn. 39, 3507 (2003).   DOI   ScienceOn
18 R. P. Praveen, M. H. Ravichandran, V. T. S. Achari, V. P. J. Raj, G. Madhu, and G. R. Bindu, International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTICON), 19, 254 (2010).
19 P. D. Pfister and Y. Perriard, IEEE Trans. Magn. 47, 1739 (2011).   DOI   ScienceOn
20 X. H. Wang, Q. F. Li, and S. H. Wang, IEEE Trans. Magn. 18, 424 (2003).
21 A. B. Proca, A. Keyhani, A. El-Antably, W. Z. Lu, and M. Dai, IEEE Trans. Energy Conver. 18, 386 (2003).   DOI   ScienceOn
22 Joon Hyuk Park, Jong Hyun Choi, Dong Ho Kim, and Yoon Su Baek, IEEE Trans. Magn. 40, 3069 (2004).   DOI   ScienceOn
23 Seok-Myeong Jang, Min-Mo Koo, Yu-Seop Park, Jang-Young Choi, and Sung-Ho Lee, IEEE Trans. Magn. 47, 3665 (2011).   DOI   ScienceOn
24 B. Ackermann and R. Sottek, Archiv fuer Elektrotechnik (Berlin) 78, 117 (1992).
25 Z. Q. Zhu and D. Howe, IEEE Trans. Magn. 29, 143 (1993).   DOI   ScienceOn
26 D. C. Hanselman, New York: McGraw-Hill, Inc., 1994.