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CONFORMAL MAPPING AND CLASSICAL KERNEL
FUNCTIONS

YouNGg-Bok CHUNG

Abstract. We show that the exact Bergman kernel function asso-
ciated to a C* bounded domain in the plane relates the derivatives
of the Ahlfors map in an explicit way. And we find several formulas
relating the exact Bergman kernel to classical kernel functions in

potential theory.

1. Introduction

I showed in [6] that the exact Bergman kernel function associated
to a C® smoothly bounded domain in the plane can be expressed in
terms of the derivative of the Ahlfors map and the harmonic measures.
I also showed in [7] that the exact Bergman kernel function is expressed
in terms of the derivative of the Ahlfors map and the Szegl kernel in
the first variable explicitly. Here we shall show that the exact Bergman
kernel is written as a sum of the derivative of the Ahlfors map and the
Szegd kernel and the Garabedian kernel in it both variables explicitly.
Furthermore, a explicit formula for a relationship between the exact
Bergman kernel, the derivative of the Ahlfors map and the Szegd kernel

will be presented when the domain is doubly connected. The results
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of this paper are of practical importance because the Ahlfors map is a
solution of an extremal problem in a multiply connected domain such
as the Riemann mapping function in a simply connected domain. And
Kerzman and Stein[9], Kerzman and Trummer[10], Trummer{13] and

Bell[1] also showed that the Ahlfors map is highly computable object.

2. Preliminaries and Notations

In this section, we review some preliminaries about the kernel func-
tions and notations. To begin with, we shall assume that (2 is a bounded
n-connected domain in the plane with C* smooth boundary. Let v;,j =
1,--+,n, denote the n non-intersecting C'*™ simple closed curves defin-
ing the boundary bQ2 of 2. We assume that the boundary curve 7; is
parameterized in the standard sense by z;(t),0 < ¢t < 1. For conve-
nience, let v, denote the outer boundary curve of . Let T'(z) be the
C® function defined on b2 by the complex unit tangent vector in the
direction of the standard orientation. For example, when z = z;(t) € v;,

0
TE) = o)

functions on b2 that are square integrable with respect to arc length

. We shall let L?(bS2) denote the space of complex valued

measure ds and let L2({2) denote the space of complex valued functions
on 2 that are square integrable with respect to Lebesgue area measure
dA. The Hardy space of functions in L2(b2) that are the L? boundary
values of holomorphic functions on 2 shall be written H?(b$2) and the
Bergman space of holomorphic functions on § that are in L%(f2) shall
be written H?(Q2).

The orthogonal projection of L2(b2) onto H?(b$2) with respect to the

inner product
< u,v >bg=/ uvds
b2

is called the Szegé projection denoted by SP. The Szegé kernel denoted
by S(z,w) is the kernel for SP. It is well known that S(z,w) extends
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to the boundary to be in C® ((2 x )\ {(z,2) : z € bQ}). And it is a
holomorphic function of z and an antiholomorphic function of w on Qxq.
We note that S(z, z) is real and positive for z € 2 and S(z, w) = S(w, 2).
The Garabedian kernel L(z, w) is the kernel for the orthogonal projection
SPL defined by

L(z,w) =iS(z,w)T(2), for (z,w) € b2 x Q.

For fixed w € ©, L(z, w) is a holomorphic function of z on Q\ {w} with a
simple pole at w with residue o Furthermore, L(z, w) extends to be in
C®((Ax N\ {(z,2) : 2z € Q}). We also note that L(w, z) = ~L(z,w)
and L(z,w) is zero-free for all (z,w) € Q x Q with z # w. All of these
properties can be found in Bell’s book[3]. See also [5].

For fixed a € €, the Ahlfors map f, associated to the pair (,a) is
an n-to-one proper holomorphic mapping of £ onto the unit disc and
extends C* smoothly to the boundary of Q. And it also maps each
boundary curve «; one-to-one onto the unit disc. This Ahlfors map f,
is the unique solution to the extremal problem: among all holomorphic
functions h mapping € into the unit disc, find the one taking h'(a) real-
positive valued and as large as possible. Hence it is very important to
express classical kernel functions in terms of the derivative of the Ahlfors
map. On the other hand, The Ahlfors map is given in terms of the Szegd
kernel and Garabedian kernel (see [8]) by

(,0)
(=)

Let E2(£2) denote the exact Bergman space of holomorphic functions

n

fa(z) = I

in H2(Q) such that have single-valued indefinite integrals. It is clear
that in a simply connected domain the exact Bergman space is equal to
the Bergman space. Let E(z,w) denote the exact Bergman kernel that
is the kernel for the orthogonal projection of L(£2) onto E*(). In the

simply connected case, it is easy to see that the exact Bergman kernel
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function(and hence the Bergman kernel) is related (see [6]) via
E(z,w) = 25(w,w) fy,(2).

Furthermore, I proved in [6] that in multiply connected domains the
exact Bergman kernel function can be written in terms of derivative of
the Ahlfors map and the Szegd kernel. In the next section we shall find

much more explicit form of formula than before using Bell’s result[4].

3. Main Results

The harmonic measure function wj,j = 1,---,n associated to the
boundary curves {x} of §2 is a harmonic function that solves the Dirich-
let problem on Q with boundary data equal to one on <; and zero on
the other boundary curves. Then the function
404

0z

is holomorphic in 2 and it is the derivative of the multivalued holomor-

Fj

phic function obtained by analytically continuing around {2 a germ of
w; + v, where vis a local harmonic conjugate of w;.

It is a classical fact that the set of functions {Fj:j =1,---,n -1}
is linearly independent. In fact, the set {F; : j =1,--- ,n—1} is a basis
for the space H2(Q) \ E?(f) of the complement of the exact Bergman
space. From this, it is easy to see (see [5], [11]) that the exact Bergman
kernel function F(z,w) is related to the Szeg6 kernel S(z,w) via the

identity

n—1
E(z,w) = 47S(z,w)* + ) _ ay;Fi(2) F;(w),
i,j=1
where a;; are constants independent of the variables z and w.
Let a € Q be fixed. Since the Ahlfors map f,(z) = S(z,a)/L(z,a) is
n-to-one, it has n zeroes. But fy(a) = 0, fi(a) = 27S(a,a) # 0. Thus
the simple zero of f, at a accounts for the simple pole of L(z,a) at a.

The other n — 1 zeroes of f, come from exactly n — 1 zeroes of S(z,a)
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in Q\ {a}. Let a1,a2, - ,an—1 denote these n — 1 zeroes counted with
multiplicities. It was proved in [2] that for all but at most finitely many
points a € Q, the kernel S(z, a) has n—1 distinct simple zeroes in (2 as a
function of z. We may thus assume without loss of generality that those
n — 1 zeroes a1,a9, -+ ,an—1 Of S(z,a) are all distinct simple zeroes.

Schiffer[12] proved that the set of n — 1 functions {S(z,a;)L(z,a) :
j=1,---,n—1} and the set {F; : j = 1,--- ,n — 1} span the same
vector space of functions. Notice that since the pole of L(z,a) at z = a is
cancelled out by the zero of S(z, a;) at z = a, the function S(z, a;)L(2, a)
extends C™ smoothly to the boundary of 2. It is also proved in {3] that
the linear span of {S(z,a;)L(z,a): j = 1,--- ,n — 1} is the same as the
linear span of the set {S(z,a)L(z,a;):j=1,---,n—1}.

Hence we have obtained the following formula relating the exact

Bergman kernel to the Szegd kernel.

Theorem 3.1. Q is a n-connected domain in the plane bounded by
the non-intersecting C* simple closed curves. Let a € §) be fixed and
let a1, a2, ,an_1 be n — 1 distinct simple zeroes of the Szegd kernel
function S(z,a). Then the exact Bergman kernel E(z,w) is related to
the Szegd kernel via the identity

n—1

E(z,w) = 4n8(z,w)* + Y i3 S(2,0)S(w,a)L(z, a;) L(w, a;)

3,j=1
or

n—1
E(z,w) = 47S(z,w)* + > _ 14;8(2, a:)S(w, a;)L(z,a) L(w, a).
i,j=1

By the definition of the exact Bergman kernel, E(z, w) is the deriv-
ative of a holomorphic function on {2 and hence it is very important to
find an indefinite integral of the kernel explicitly. I proved in (7] that

the exact Bergman kernel is related to the derivative of the Ahlfors map
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via

E(z,a) = 2S(a,a)fi(z +Z/\ (a)S(z,a)L(z,a;) +Z,u](a (2,a;)?

7=1

where A;(a) and p;(a) are constants depending on a. Using the invert-
ibility of (n — 1) x (n — 1) matrix

B= [S(ajv ak)2]

I also found in [7] the identity

, n—1
(B1)  S(zay = S@0al?) S S g 92,

2 2 o
where
[ S'(a1,a) ]
Cl(a) L(al,a)
— B! :
cn-1(a) S'(an-1,a)
L L(an—lva) J

On the other hand, it follows from Theorem 3.1 that by letting w = a,

n—1
E(z,a) = 47S(z,a)? + Z wi;S(z,a)S(a, a)L(z, a;)L(a, a;).

i.=1

Hence by inserting (3.1) into the above identity we obtain the follow-
ing useful formula between the exact Bergman kernel function and the

derivative of the Ahlfors map.

Theorem 3.2. () is a n-connected domain in the plane bounded by
the non-intersecting C'*° simple closed curves. Let a € Q be fixed and
let ai,ag,--- ,ap—1 be n — 1 distinct simple zeroes of the Szegd kernel

function S(z,a). Then the exact Bergman kernel E(z,a) is related to
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the derivative of the Ahlfors map via the identity

n—1
Bz,0) = 25(@ ) f4(2) — 3 S (@)$ 00,
j=1
n—1
+ 37 wiiS(2,0)S(a, @) L(z, a;) L(a, a;)
i,j=1
where _ .
S’(ay,a)
c1(a) L(ay,a)
: = [S(aj, ax)’] :
cn-1(a) 5'(an-1,0)
L L(an—l’a) |

In particular, when n = 2, i.e.,  is doubly connected, since ci{a) =

L (a1, 0) and f’(a) = 27S(a, a), it follows from Theorem 3.2
S(al,a1)2 L(al,a) . N T '
that

E(a,a) = 47S(a,a)?® + p115(a, a)*|L(a,a1)|.
Notice that S(a,a;) = 0. Thus we have

E(z,a) = 25(a,a) fo(2)

E(a,a) — 47S(a,a)?

S(a,a)?|L(a,a1)|? S(a,a)L(a,a1)L(z,a1)S(z,a)

28(a,a)S'(a1,a)
S(ai,a1)?L(a,ai)

Theorem 3.3.  is a doubly connected domain in the plane bounded

S(z,a1)2

by the non-intersecting C*° simple closed curves. Let a € Q be fixed

and let a; be the unique simple zero of the Szeg6 kernel function S (z,a).

Then the exact Bergman kernel E(z, a) is related to the derivative of the

Abhlfors map via the identity

E(a,a) — 475(a, a)?

S(a,a)L(a,a1)

25(a,a)S’(a1,a)
S(a1,a1)?L(a,a1)

E(z,a) = 25(a,a) fo(2) + L(z,a1)5(z,0)

S(z,a1)%.
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Theorem 3.3 shows that once the value of E(a,a) on the diagonal
point {(a,a)} is computed, the value of E(z,a) is easily obtained using

the values of the Szeg6 kernel.
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