• Title/Summary/Keyword: hamiltonian

Search Result 270, Processing Time 0.154 seconds

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Su-Ho;Hyun, Dong-Geul
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.

Effect of local field on atomic systems II : Derivation of macroscopic quantum Langevin equations in two-level systems (국소장이 원자계에 미치는 영향에 대한 이론 II: 이준위 원자계에서의 거시 양자 Langevin 방정식의 유도)

  • 안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.103-106
    • /
    • 2003
  • The microscopic quantum Langevin equations for two-level atom electric dipole systems are derived. starting from the microscopic interaction Hamiltonian of the systems. By averaging those microscopic equations over a macroscopic region, the macroscopic quantum Langevin equations are derived and the effect of local-field corrections on the two-level systems is investigated.

OPTIMAL ERROR ESTIMATE OF A DECOUPLED CONSERVATIVE LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE KLEIN-GORDON-SCHRÖDINGER EQUATIONS

  • YANG, HE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.39-78
    • /
    • 2020
  • In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.

Dynamic Adjustment of Noncooperative Games Where Informations are Given at Discrete Time Intervals

  • Oh, Hyungjae
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.71-83
    • /
    • 1990
  • This paper concerns the analyses of dynamic adjustments in noncooperative games where the market informations are given at discrete time intervals. During the game period, the market informations are given at discrete time intervals. During the game period, the inventories initially stored by players are to be released one day based to the completely competitive market so as to maximize each player's revenue, where players' parameters are unknown one another. Game results have shown that the continuous dynamic adjustment does not necessarily assure the better revenue, and if a player thinks that his parameter is underestimated by hig opponent, then he is better overestimate his opponent's parameter.

  • PDF

Existence of a nash equilibrium to differential games with nonlinear constraints

  • Kim, Yang-Yol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1989.10a
    • /
    • pp.45-50
    • /
    • 1989
  • The above theorm states that much larger classes of differential games have an equilibrium. The most severe assumption is the second one. It requires that state dynamic equations be linear on his own control variables. But, the dynamic programming approach applied in the above is hardly implementable for the purpose of computation. It is very difficult to solve (SP$_{it}$) directly. Notice, however, the problem can be transformed into a Hamiltonian maximization problem which is easy to solve if initial conditions are given. In this way, it is possible to design a solution algorithm to problems with nonlinear constraints. The above two theorems probide a basis for such an algorithm.m.

  • PDF

CYCLES THROUGH A GIVEN SET OF VERTICES IN REGULAR MULTIPARTITE TOURNAMENTS

  • Volkmann, Lutz;Winzen, Stefan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.683-695
    • /
    • 2007
  • A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. In a recent article, the authors proved that a regular c-partite tournament with $r{\geq}2$ vertices in each partite set contains a cycle with exactly r-1 vertices from each partite set, with exception of the case that c=4 and r=2. Here we will examine the existence of cycles with r-2 vertices from each partite set in regular multipartite tournaments where the r-2 vertices are chosen arbitrarily. Let D be a regular c-partite tournament and let $X{\subseteq}V(D)$ be an arbitrary set with exactly 2 vertices of each partite set. For all $c{\geq}4$ we will determine the minimal value g(c) such that D-X is Hamiltonian for every regular multipartite tournament with $r{\geq}g(c)$.

Petersen-Torus(PT) Network for Multicomputing System (멀티컴퓨팅 시스템을 위한 피터슨-토러스(PT) 네트워크)

  • Seo, Jung-Hyun;Lee, Hyeong-Ok;Jang, Moon-Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.263-272
    • /
    • 2008
  • We propose and analyze a new interconnection network, called petersen-torus(PT) network based on well-known petersen graph. PT network has a smaller diameter and a smaller network cost than honeycomb torus with same number of nodes. In this paper, we propose optimal routing algorithm and hamiltonian cycle algorithm. We derive diameter, network cost and bisection width.

Orbital Quantum Bit in Si Quantum Dots

  • Ahn, D.;Oh, J.H.;Hwnag, S.W.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to let the system settle down to the symmetric orbital state. Estimates of the decoherence time is made for the longitudinal acoustic phonon process.

  • PDF