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ABSTRACT. In this paper, we propose a decoupled local discontinuous Galerkin method for
solving the Klein-Gordon-Schrodinger (KGS) equations. The KGS equations is a model of the
Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our
scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is
especially suitable for parallel computing. We present the conservation property of our fully
discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal
error estimate.

1. INTRODUCTION
The Klein-Gordon-Schrodinger (KGS) Egs. (1.1)
W+ Ve + =0, xzel, >0,
Gt — oz +O— [W° =0, ze€l, t>0,

is a classical model of the Yukawa interaction of the complex scalar nucleon field ¢ (x, t) and
the real scalar meson field ¢(x, ). In this paper, we consider the Eqgs. (1.1) with initial condi-
tions for ¢(x, 0), ¢(x,0), ¢¢(x,0), and periodic boundary conditions on ) and ¢. If we denote
the real and imaginary part of the nucleon field ¢)(z,t) as p(z, t) and ¢(x, t), respectively, the
KGS equations can be written as

(1.1)

qt = Pzz + ¢p7 Pt = —Qxx — ¢Q7
¢tt = ¢:vx - ¢+p2 +q21

There are two important conserved quantities for the KGS Eqgs. (1.2), namely, the wave energy

/[ (p* + ¢*) dx, (1.3)

(1.2)
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and the Hamiltonian
1 1 1
/1 <2¢2 + o0+ St — (0" + q%) da. (1.4)

Accurate numerical methods of the KGS equations that preserve the invariant quantities (1.3)
and (1.4) are of fundamental importance.

There has been numerous studies to investigate the numerical methods for the KGS equa-
tions. The finite difference methods for the KGS equations can be referred to [1, 2, 3, 4], and the
spectral methods can be referred to [5, 6,7, 8,9, 10, 11]. Alternative numerical methods include
the multi-symplectic schemes [12], the Sinc collocation methods [13], the generalized moving
least squares methods [14], the spline collocation methods [15] and the local discontinuous
Galerkin methods [16]. In particular, the author in [16] proposed energy- and Hamiltonian-
preserving local discontinuous Galerkin methods for the KGS equations. The semi-discrete
schemes are proved to conserve the energy and Hamiltonian exactly, and the conservation of
the fully discrete Hamiltonian depends on the time step size At. Due to the fact that the full
discrete schemes in [16] lead to undecoupled system about ¢ and ¢, one cannot update the
numerical solutions of 1) and ¢ simultaneously. In this paper, we propose a new fully discrete
local discontinuous Galerkin method such that the computation of the nucleon and meson field
is fully decoupled, which is suitable for parallel computing at each time step.

Our scheme is based on the local discontinuous Galerkin (LDG) methods which were orig-
inally developed to solve a convection-diffusion equation in Cockburn and Shu’s work [17].
The LDG methods were then used to solve KdV-type equations [18], PDEs with higher order
derivatives [19], nonlinear wave equations [20, 21]. The LDG methods share the advantages
of the standard discontinuous Galerkin methods, including high-order accuracy, suitability for
parallel computing and complicated geometry. In addition, in recent years much attention has
been paid to develop invariant-conserving LDG methods for various PDEs [22, 23, 24, 16]. In
this paper, we design a fully discrete LDG method based on the semi-discrete LDG methods
in [16], analyze the conservation property, and prove the optimal error estimate of the scheme.
The key component of the error estimate is the assumption about the L°° norm of the numerical
solutions. Such an assumption leads to the optimal error estimate of our fully discrete scheme,
and it is further proved by mathematical induction in the time step. Numerical results show
that our new fully discrete scheme leads to high-order, energy- and Hamiltonian-preserving
numerical solutions.

The rest of the paper is organized as follows. In section 2, we present our fully discrete
LDG method for the Klein-Gordon-Schrddinger equations, and prove the property of energy-
and Hamiltonian conservation. In section 3, we establish the optimal error estimate of our
proposed scheme. Some numerical results are given in section 5.

2. FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHODS

2.1. Preliminaries. Throughout this paper, we denote the L?-Sobolev space of order m by
H™ whose norm is represented by || - ||,,,. When m = 0, the Sobolev space H" becomes >
whose equipped norm is simply || - ||. The L>°-Sobolev space of order m is denoted by W™



DECOUPLED CONSERVATIVE LDG METHOD FOR THE KSG EQUATIONS 41

whose norm is || - ||;,00. When m = 0, we use || - || instead of || - ||;,,00. We consider the
computational domain of the KGS equations to be I := [a, b]. Let {I; }év | to be a partition of
I, where I; = [z, ,J+}f0r]—1 NWltha—a:1<:E3< <:172N+1—bWe
denote the length of each interval I; to be h;, and the mesh size h is defined as the maximum
of all /;. We assume that our mesh is regular, such that max h;/ min h; is uniformly bounded
with mesh refinement. Let P* (I ;) be a polynomial space of degree at most £ on element I},
and our approximation space is V;¥ = {v : v| I € P¥(1;),Vj} which is a piecewise defined
polynomial space. Note that for any v € th, there are two values of v from both sides of z; | 1

Letv | = i - ,and =1 . 1—e€). Thejumpofvatz,, 1 isdenoted
Vbl E_1>151+U($ ;—l—e) v+1 6_1}%1_‘_11(1‘)4_% €) jumpof vatz;, 1

by [U]j+é = v;:r% — v fIee and the average of v is denoted by {U}j+% = ( i tou )/2

Forany f, g € Vh , the jumps of f and g satisty the following equality

- + -
[fg]jJr% 7fj+%[g]j+% *gj_,'_%[f]j#% =0. (2.1)
We will use Gauss-Radau projections to define our scheme and establish error estimate. For
any v € H'(I), there are two types of Gauss-Radau projections of v onto V,{“, ie., IITv and
IT" v, defined as follows

It : flj(HJrv)wda;:ij vwdr, Yw e P(I); (ITtw )j ., VY

l\.’)\»—‘
[NIES

=o'
J

I : flj(H_v)w dx = flj vwdz, Yw € Pk_l(Ij)§ (H_U)j_

v’ V.
J+3’ J

N[

The Gauss-Radau projections defined above, and the standard L? projection share some impor-
tant approximation properties (2.2). For any Q = IIT, II~ or a standard L? projection, and for
any sufficiently smooth function f, there are

If = QI < CHF Y fllesr,  IIf = Qf lloe < CHFH| £llks1,00- (2.2)

Here C is a generic positive constant that is independent of i and f. Let g be any polynomial
on any element [}, then the inverse inequality is given by

_1
I9lloc < Ch™2]|g]|. (2.3)

Note that the || - || and || - || are two norms on I;.

2.2. Decoupled conservative local discontinuous Galerkin method. We now define the de-
coupled conservative local discontinuous Galerkin method for Egs. (1.2). To derive the LDG
method, we first rewrite Egs. (1.2) as a first-order PDE system:

Q= Uy + PP, Pt = —Zz — @G,

Gt = 52— o+ " + ¢, (2.4)

U=Dy, 2=z, S= Qg
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We then obtain the semi-discrete LDG method of KGS equations based on (2.4). That is, we
look for gy, ph, ¢n, un, 25 and s, € V,f, such that

_ =~ - () +
/Ij qrwndr = /Ij up(wy)dx + <uh)]+%(w1)j+% (“h)g—%(wl)j,%
+/ Cbhph’lUld-r,
I;
_ ~ - ~ +
e I R Co M R C Ay TS
_ oy - _(ay +
/Ij Onuwzde = /Ij sn(ws)adz + (sn); 1 (ws) 1 — (5n);1 (ws) ;s
2, 2
+/ (ph + qh)wgdm,
I
_ N - (5 +
mem-— Amme+@m%w%ﬁ ()@,
_ ~\ - (=Y +
/Ij zpwsdr = /Ij qn(ws)zdz + (Qh)ﬁ%(ws))ﬁ% (Qh)]_%(%)j_%’
/Ij swgde = — /]j Onw)adz + (B1);.3 (w5);,y — (On);_y (we) Py,
for all test functions wi, wo, ..., wg € th and all j. Here gy is the temporal derivative of

qn» and similar definitions hold for pj, ; and ¢, 4. In addition, @y, Zh, Sk, Ph. Gn, and ¢y, are
numerical fluxes, which are critical for the numerical stability and the order of convergence.
One suitable choice of numerical fluxes is

— ~ = ~ 4 ~ 4 ~ = o+
Up = Up s, 2Zh = Zp, Ph=DPp> 4Gnh =4y, Sh =Sy, ¢h_¢h- (25)
Such a choice is not unique. As long as the flux w, and zj, are taken from the same direction,

pr, and g, are taken from the same direction, u;, and py, are taken from the opposite direction,

and S, and ¢y, are taken from the opposite direction, the semi-discrete energy and Hamiltonian
can be conserved exactly [16].

The decoupled fully discrete local discontinuous Galerkin scheme is defined based on the
semi-discrete scheme above with (2.5). Let ¢}, s}, py, q;;, uj and z;’ be the numerical solu-
tions at time t" = nAt, where At is the time step size. Let ¢™, s™, p", ¢", u™ and z" be the
exact solutions at t". Our scheme consists of the following steps:

Step 1. Initialize numerical solutions at t and ¢':
u) =T, 20 =120 pf) =T1Tp°, ¢ =TT, &) =T s° @) =T17¢°,

1_ 0 o B 0 0 vz (02
On = & + (AT + =T ((6%)0w — ¢” + ()" + (')7)
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(g}, p},ul, 2}) is then updated by

1 _ _
| ki wn)ade + Sk + 1)y ()

. 2
J

1
(0} 4+ [ Gh+ @k + s,
J

At

N

Ph— D, 1 1, .0 L R -
/ wadr = 2/ (25, + 23) (w2)odz — i(zh +2p)a(w2) s
I I ’ (2.6)

(wa)* —1/kﬁ+ﬁx¢+ﬁWMa

1
j—= 4
2 lj

+ %(z,i +29)
[ whwsda == [ phwn)ade+ @GR, (), — WA ()]

J J

1
J=3

spwadr = — [ gy (wa)ode + (q3)T 1 (wa)7 0 = (gp)T 1 (wa) T,
9 9 GV

Forn = 1,2, ..., the numerical solutions (q,’f“, pZH qﬁZH) are updated in step 2 and 3.

Step 2. Update q"“, pZH Z“ and z"+1 € fo“:

QZH_QZ ! 1 n+1 n—1 1 n+1 n—1 —
[ e = =5 [ @ g wade 4 S0 ) )

- 2At 2 2
j J
2( uptt 4w~ l)j l(wl 113 /¢" (™ + o wnde,
2
1 n—1
pZ’+ Dy, . 1 n+1 n—1 1 n+1 n—1 -
A;2Atwﬂm_21( A waedz = (57 4275 (w2))
1
bl ATy g [
2 2
/[ ul wgda = _/1 Pt (ws), dx—i—(p}f“)ﬁ?(w?)) i+l (pZH);F_%(w:s)j%
J J
l;ymwzzﬂﬂ(>m+wﬂm¢mhd<ﬂﬂ;;mj?
j J

for any wi, wag, w3 and wy € th.
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Step 3. Update gZ)”H and snle € th:

¢n+1 - 2¢h + Qb _ 1 n+1 n—1 1 n+1 n—1
/ de__2/1j< + s}, )vxdx—i-Q( + s, )]Jr ]Jr%
1 _
- 2( sptt 4 ) l)j_%vj*_% / (pt + ¢ Hvda ~|—/ ((pﬂ)2 + (qﬁ)Q) vdz,
I;
/ ”'Hw dl‘ == / ¢n+1U)xde + (¢Z+1)j+%w]_+% - (¢Z+1);;%w;;%7
\

(2.8)
for any v and w € th .

Note that the step 2 and step 3 of our proposed fully discrete scheme are decoupled. In fact,
step 1 leads to uj, 27, py, qp, sj and ¢} forn = 0 and 1. In step 2, we update u%, Z}QL, p% and
q}% using u%, 22, p(,)l, q2 and gzﬁ}l, which are obtained from step 1. In step 3, we update qb,% and s%
using p,ll, q,ll, ¢>2 and 52, which are also obtained from step 1. Since step 3 does not require the
results from step 2, these two steps are decoupled for n = 1. For general n, suppose we have
already computed all the numerical solutions for all the time level < n, then step 2 is to update
uﬁ“ ”H, pﬁ“ and q"+1 usmg b, up ! z,?*l, pzfl and q; ! and step 3 is to update gb”“
and s, using py, qp, Oy, cb” and sh ~1. Again, the step 3 does not require the results from
step 2. Therefore, the step 2 and step 3 are decoupled at each time level. Because of that, these
two steps can be updated simultaneously by parallel computing. However, the fully discrete
scheme in [16] is not decoupled since the step 2 depends on the numerical solutions from step
1. Thus, the main advantage of the proposed method over the methods in [16] is the suitability
for parallel computing. Another difference between our proposed scheme and undecoupled
LDG method in [16] is that q,lL and p}L need to be initialized. Our decoupled scheme leads to
different conservation property and error estimates, which we will discuss in later sections.

2.3. Conservation properties of the fully discrete decoupled LDG methods. In this sub-
section, we present the energy- and Hamiltonian conservation properties of the fully discrete
decoupled local discontinuous Galerkin methods (2.6)-(2.8).

Theorem 2.1. (Energy Conservation) The numerical solutions to the fully discrete LDG meth-
ods (2.6)-(2.8) satisfy:

lailI” + k11> = llapll® + I |1%,  ¥n. (2.9)

Proof. Foranyn > 1,letw; = q;f“ -+ qﬁ‘l and wy = "+1 +p) Lin (2.7), add the resulting

equations and sum over j, one can get

2At(llq"HW P = gy~ = = 1%) = €1+ s, (2.10)

where
1 1
0=~ [0+ G e = D Y,

I =
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and

1
@2:/(n+1+221)(n+1+ph d.ﬁlf—i— Z n+1_|_Z}'rLzl
2 I

n—1

+1
[ b + py,

J ]j+%'

Here we have used the fact that (u} ™! +uf'~ 1);( "H%—qﬁ 1)J{ = (upt )~ 1)NJrl(qZH+
1 1 -1 1 1 1 1 1 1
GV G TR T = G A B

due to the periodic boundary condltrons Furthermore we add the third and the fourth equatlon
in (2.7) over all spatial intervals at time ¢"*! and ¢t"~!, and get

1 1
2/1( Pt +up” 1)w3da:+ 2/1( Zntl + 2" 1)w4d:c

N
= =g 00 A e = 5 SR el
=
—1/( mH g (wa) d:z:—li( T w1 (210
5 h @ 5 < b i Waljed
Here we have used the periodic boundary conditions. We then let ws = — (2! + 271) and
wy = up™ + w7 in (2.11) and obtain
0 = O3 + Oy, (2.12)
where

1
_ +1 1 +1 1 +1 1I\+ +1 1
03 =5 [@h™ + b R e+ LS L e,

] 1
and
1 e
@4:_2/( n+1+q2 1)( n+1+u2 l)zdx_§Z( n—&—l_i_q;LL 1);:_1[ n—i—l_i_uzz 1]]‘4_%'
j=1

We now add (2.10) and (2.12) to get

mt (g™ 02+ loh ™12 = Mg 1P = lpp ' 1I%) = (81 + ©4) + (B2 + ©3).  (2.13)

Using the periodic boundary conditions and the property of jump (2.1), we can show that
01 + ©4 = 0. Similarly, we can also show that ©2 4+ O3 = 0. Therefore, we have

gy ™12 + oy ™12 = llap 1P + g%, vn> 1 (2.14)

Next, we can follow similar procedures described above to show that (2.6) leads to
lanll® + lpall® = lan !l + llon ]l (2.15)
Finally, we can conclude the proof by combining (2.14) and (2.15). ]
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Theorem 2.1 implies that our decoupled fully discrete local discontinuous Galerkin method
leads to numerical solutions that preserve the total energy exactly. The fully discrete Hamil-
tonian property of the fully discrete LDG method is given in the next theorem.

Theorem 2.2. (Hamiltonian Conservation) The fully discrete LDG method (2. 6)-(2 8) satisfies:

1|optt - <Z>"

1 n+1 2 n+1 2 n+1 2 n+1 2
lon 117 + H I” + H I” + H (S v

2

—5 J (@R + @t — 5 [T+ a2 i

P — Py

| PSS DI EE STRRSE TP S ST D S ~12
= Z||¢Z | +ZHSZ | +§HUZ | +§HZZ 1=+ AL

2

1 1
-5 /I((pZ)2 +(a7)*)op e — /I((pZ D24 () gpde, Vn > 1.
(2.16)

Proof. We only need to prove the following two equalities (2.17) and (2.18) to complete the
proof:

2

n+1 2 n+1(12 ¢n+1 (an n\2 n\2\ (n+1
H¢> I” + H P+ I((ph) +(qp)7)¢y " dx
2
1 n—12 1 n—1)2 ¢27¢271 7\ 2 n\2\ n—1
e o [y (A SO P R )
I

and
P 2P / (G2 + () opde
e LN Bt / (Y2 + (@@ Y))épde. (2.18)

Since (¢! — 207 + ¢ (op T — dp ) = (¢ — ¢ — (¢ — ¢ )2, we take v =
— - 1m . sSum oOover 7 and a the eI‘lO 1C boundary conditions to get
optt —p i (28) jand pply he periodic boundary conditi g

‘qb"“ o’ |¢" on-

n12 L ome12
N N L G | (2.19)
- /I (G0 + (@)@t — opY)da
1 1 Y
= —2/1( syt sy (o = op D ada — 52( syt s
j=1

[¢n+1 _ (bn 1]]+7

J+
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We then take the sum of the second equation in (2.8) over all 7, subtract the resulting equation
at time ¢"~! from the equation at time "+, and let w = (s}'*! + s7'71) /2 to get

1
|| sp1? — 5lIsh 2 (2.20)

N
1 n n— n n 1 n T — n n
S T (G G A MR DA A ML A O

J=1

Adding Egs. (2.19)- (2.20) and applying (2.1), one can get (2.17).

Next we will show equality (2.18) to conclude the proof. Let w; = (pZJr1 2 b,
wy = qZ“ qﬁ_l in (2.7), and add these two equations over all j to get
1
0 = 2/] ( n+1 +UZ 1)( n+l n 1 Ldz + ~ Z n+1 +UZ 1)] [pZ—H pz 1]]’-1—%
j

1 1 1 1 1 1 1 1 1
" 2/<n+ F @ - Y+ Z T =

— /¢> Pt — () dx—/gb" 2 — (g 1)?)da. (2.21)

Due to the third and fourth equation in (2.7), it is easy to show that

N

/I(UZJr1 up Nwgdr = /(pZ“ P ) (ws)edz =Y (pp T = P~ Dl
j=1
N
/1( = wads = /(qZ*1 g ) (wa)adz =Y (g — g~ D lwalgeg
j=1
Letws = L (uft +u} ") and wy = L (27 + 2~ 1) in the two equalities above, respectively,
and add the resulting equations, we can get
1 2y 12 Ly L a1
sl + H S Ry L R A (2.22)
1 e
= g [T e e = 5 SR -
j=1
N

1 1
= /(qﬁ+1 G ET AT edr = 5 (T =T T T
j=1
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‘We then subtract Eq. (2.22) and (2.21), apply the property of jump (2.1) to get

H PP+ H h“HZ || up P - ||z"‘1H2 (2.23)
— /¢n n+1 ( dl‘—l— /¢h n+1 ( }TLL 1)2)(1%'.
Since (2.23) is equivalent to (2.18), we can conclude this proof. ]

Remark 2.1. Since
1 1 1 -1
”an+1||2 _ 1||¢n—1||2 _ 1/ ¢Z+ + QZ)Z ¢n+1d / QSZ"— + ¢Z d)n_ld.l‘
4" 2 /; 2 2/, 2 h

Shon 217 = Sllen =17

%

1 — n+i n—1
*II A e e ] ] e D

1 _ n+ n—i
H A e [ R [ 2~ 2P,

]. 1 n—+ TL*l
H e e [ N 4 2 =l

! [oR? + @i L [ s @

~ /1 ("5 4 (7))o F da,

and

1 1 1 1 -1

3 [+ @D ae 5 [+ oo

nol no1 nol
~ [ @ e
we can regard (2.16) as an approximation of the Hamiltonian conservation (1.4) from time
1 1

t""2 to time t""2. Moreover, if we compare the Hamiltonian conservation property of our
decoupled fully discrete LDG method with that of the undecoupled Sfully dzscrete LDG methoa’
in [16], we can see that only the terms —% [,((p (PrtH2 + (¢ h)?)olda and — 2+

(q271)2)¢ﬁdfn are different. Therefore, our decoupled LDG method leads to quite szmllar
Hamiltonian property to the undecoupled method.

3. ERROR ESTIMATES OF THE DECOUPLED FULLY DISCRETE LDG METHOD

In this section, we give the error estimates for the L? errors of the decoupled fully discrete
LDG method (2.6)-(2.8). Theorem 3.1 is the main theorem, which is proved based on error
equations, energy equations and a key component, i.e., the L°°-assumption. Throughout the
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section, we use C' to denote a generic constant, and we assume that the time step size At and
the mesh size h are both less than or equal to 1. The main theorem is given as follows.

Theorem 3.1. For any T > 0, let q", p™ and ¢™ be the sufficiently smooth exact solutions to
the Klein-Gordon-Schrodinger equations (1.2) at t™ = nAt for alln < |T/At|. Let g}, p}
and ¢}, be the numerical solutions to the scheme (2.6)-(2.8) with numerical flux (2.5). Suppose

there exists a constant v > 0 such that (At)? < Vh%, then the following error estimates hold:
" = pRll* + lla" — glI* + |¢" — 671> < CR** 2 4 C (A, 3.1

where C is a positive constant that depends on T and the exact solutions, and it is independent
of At, h and n.

3.1. Truncation Errors and Error equations. In order to prove Theorem 3.1, we need some
results about truncations errors and error equations.

Lemma 3.1. Forn > 1, let T¢)(z), T} (z) and T (x) be the truncation errors that satisfy

qn+1 o qn—l 1 1
= S w4 ") + T (@),

2At 2
pn+1 _pnfl 1 B 1 B
72At — _5(224-1 + chz 1) _ §¢n(qn+1 + qn 1) —|—T;’(l‘),
(bn-i-l o 2¢n 4 ¢n—1 1 3 1 B
(At)Q = 5(32+1 4 3; l) - 5(¢n+1 + (bn 1) + (pn)Z + (qn)2 +T$(1’)

1 1
Let T (x), and T}7 (x) be the truncation errors at the first step that satisfy

q1_q0 [P 0 1 0y 1 0 3
At = §(ux+ux) +Z(¢ +¢ )(p +p )+Tq ($),
3.2)
1 0
b =D __} 1 0 _} 1 0y/ 1 0 %

Then the following estimates hold

1 1
T 1T 1T I T T < CAt)?, > 1.
In addition, there are
Han“ — Tgle, HT;Hl - TC}l*lH < C(At)3, Vn>1.

The lemma above can be proved simply by Taylor expansions of the exact solutions and we
skip its proof. Next we derive the error equations for our scheme. We will use ¢;, to denote the
error of p at t”, thatis, ef} = p™ —pj = 0y — &, where gy = p™ —II"p™ and £ = pj —1TTp™.
Note that IT* is the Gauss-Radau projection, such that (1), 1= (p" — H*p");r L= 0, Vj.
Similarly, we define 7y = ¢" — Itq, §g = — Itqm, Ny = ¢" — e, §s = oh — e,
Ny =u" —II"u"™, &y =up —IImu", nl =2" —1172", &0 =2 — 117 2", ¢ = s — 11" s"
and £ = s} — 11" s". Thus we have eg = 77;‘ — {g, eg = 77; — fg, en=mny—E&n el =nl—¢£7
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and e? =y — €2 Also note that the terms [|n2 ], 2|, 2]l 2], m2]| and 2] are
independent of the numerical scheme, and can be estimated directly by the approximation
properties in Eq. (2.2). Thus we only need to focus on the estimates of ||&7 [, €711 [1€3 ],
NEXI, I1ER], |I€2 | using error equations and energy equations. To derive the error equations,
we first multiply the test function w; on both sides of the first equation in (3.2), take integral
over interval I and apply integration by parts to get

B

¢' — ¢ dr — 1 1 0 d 1 1 0
AL wiar = =3 I(U +u)(wi)e Y E 1(“ +u )j+%[w1]j+%
]:
1 1, 0v01, 0 3
+7 [ @+ )" +pwide + | Tiwda. (3.3)
I I

We then use the first equation in (2.6), sum over j, and subtract the resulting equation and (3.3)
to get

1 _ ¢0 , 1 i
/zqutquuix = - /I (& + €D (wi)zda — - Zl(@i + &7 alwly
]:
1 L
3 /I(¢llz + 6N (ph + P widx + /1 nthnq

1 1
1 /I(q51 +¢") (" + p°)wrdz — /ITq2 wydz. (3.4)

widx

Here we have used the property of Gauss-Radau projection, i.e., [ 1(7711L + 79 (w1)z = 0 and
(Eu);r ; = 0 for all j. Similarly, we can derive the error equations for &/, 1 ¢1 using other
2

equations in (2.6), and the error equations for 5;“, 5;“, gntl, gntl 52*1 and €711 us-
ing (2.7) and (2.8). That is,

& —& 1 1 X
P Sp _ 4 1 0 1 1 0\—

1 1 0y( 1 0 77; - 772

1 /(¢h + op)(qn + qp)w2dx + / ngd:c
I I

1 1

1 /(¢1 +¢")(q" + ¢ wadz — /Tp2 wodz, (3.5)
I

I

N

Jles s = - G+ unede = 36+ 7o

+ / (ns, + ) ws da, (3.6)
I
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N

JErudr = - [+ eide= 36+ 7, i,

J=1

+ / (s +n2)wa de, (3.7)
I

for all w1, we, w3 and wy € V,f. In addition, for n > 1, there are

n+1 _ n 1
/5 1d.7}

fn-i—l _ gn—l
/ oA wede
I

/ (€ 4 €0 Vs da
I

/ (€ 4 € Yy da
I

N
1 n 1 n n—
= 5 @ e de = 5 Y@ e iy
j=1
1
/d)h n+1+pz l)wldx_2/¢n(pn+1+pn—1)w1dx
I
n-—+1 n—1
nq nq / n
+/w1 dr — | T wi dz, (3.8)
I 2At ;1
1 n N
= 2/( L N (we)p da + < Z g . %[wﬂﬂ%
_/(bh n-‘rl_’_qg 1)w2dx+2/¢n<qn+l+qn1)w2dx
I
n+1 nnfl
p p mn
+/12Atw2 da:—/ITp wy dz, 3.9
N
= -G G e - G G oy
J:
+ / (™ + 0wy da, (3.10)
N
= _/1( n+1 +&, )(w4)xdx—z;( 2L+1+§g*1);%[w4}j+§
]:

+ / (2t + 2 Hwa da, (3.11)
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£TL+1 _ 2&-2 + &-Z*l
/1 (At)?

ws dx

1
= -3 /( nHL L en =) (ws)p dae — = /(f"Jrl + f;l*l)wg, dx — /Tgwg, dx
I I
L
5 @ @ sy + [ (G0 + @)~ 07— (@) wado
j=1
1
7725 B 2% + ”Z 1 1 1
ws dr + = s n d 3.12
and
N
Jler - ueds = — [~ we)edo = ST - 67, el
I ;
Jj=1
+ / (5™ =0~ Hwe de, (3.13)
for all wq, wa,...,wg € V,f. Note that the error equations for §q1 and f; are different from
that for £*! and €1 with n > 1. This is due to the fact that we are using decoupled LDG

method such that q"“, Pyt and must be computed using ¢!, p}~* and ¢}~" for

n > 1. Thus qh and ph need to be updated using a different method (2.6). To deal with the
linear combination of truncation errors from the error equations, we introduce the following
lemma which will be used frequently in the proof of the main theorem. The detail of the proof
is similar to that of lemma 3.3 in [25], thus we omit its proof.

n+1
Ph

Lemma 3.2. For x = q, p or ¢, we have the following estimates:
It = 20 + 02| < CAPRML it — || < C(ADRMY,
and

It =~ < C(ADRT

We now use the error Egs. (3.4)-(3.7) to estimate £, £, g; and 5;. The results are given in
the next lemma.

Lemma 3.3.

gl = lgpll = gl = llgall = €21 = lI€N = o,
€G] < Can?, 11617 + 1617 < CAnR*+2 + C(At).
The proof of Theorem 3.1 consists of three important components, i.e., the L>° assumption,

the estimates from the Klein-Gordon equation part, and the estimates from the Schrodinger
equation part. We first give the > assumption as follows.
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L°°-Assumption: For any integer n < T'/At — 1, the following inequalities hold;

1P lloos i lloos N6k loo, Il (87 — &5 ™)/ Atllee < C.

The assumption above will be used for the estimates of both the Klein-Gordon equation part and
the Schrédinger equation part. It will eventually be proved by mathematical induction. Another
important technique for the estimates of the Schrodinger equation part is the summation-by-
parts formula:

n n

> filgivr = gio1) = —figo — fagr = > _(fir1 = [ir1)Gi + Fa19n + fagni1,  (3.14)

i=1 1=2

which can be easily verified.

3.2. The estimates for the Schrodinger and the Klein-Gordon equation parts. To make
the proof of Theorem 3.1 easy to follow, we only present the error estimates for Schrodinger
and the Klein-Gordon equation parts in the next two lemmas without proof. The detailed proof
can be found in section 4. We first give Lemma 3.4 and 3.5, which are the estimates from the
Schrodinger equation part.

Lemma 3.4. Under the L°°-Assumption, there is the following inequality for n > 1:

&GP + I — g0 = g P
< CAR™2 + (A + C(AOR (e + 67 T+ g™ + &)
+ CADR L+ [Ihlloo) 1T+ 1165 ™M+ 165+ 1155~ D

+ CA) (g2 + gy~ 17 + llgg I + Nlgg = 1% + 1€ 11%) - (3.15)

Lemma 3.5. Under the L°°-Assumption, there is the following inequality:

max_([I€,] + [1€2])

1<i<n+1
i+1 1—1
& — &
At

1
2
X
e

From the error equations for the Klein-Gordon equation part (3.12)-(3.13), we can derive
the following estimate:

< CW"' 4+ C(AH)? + C max €]+ C . max
1<i<n 2<i<n—1

i+1 i—1
¢ —9p

<i<n—1 At

1 7
+C ( + gzas); l|oh oo + , Jnax

k+1 i p
(R +  PBx (&L -+ 1EAI)-
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Lemma 3.6. Under the L°°-Assumption, the following estimate holds:

n 2 n—11|2
gt —¢n £ — &
n+12 n+1)2 _ |en—112 _ ||en—12 | I )
(R T T N [ O N N
£n+1 é-n 1 2
< C(AL) (1+ [IPhlloo + llailloo) | P2+ 1€ + 11€711 + A7
+ CAO([EH P + 1607 HP) + CAnR**2 + C(At)®. (3.16)

Remark 3.1. Lemma 3.4 and 3.5 indicate that the estimates for the Schrodinger equation part
depend on the a priori assumption about ||¢}||s and maxo<i<n—1 [[(#57 — &) ") /At .
Lemma 3.6 indicates that the estimate for the Klein-Gordon equation part depends on the a
priori assumption about ||p} || and ||q}|| . Note that maxo<i<n—1 [|(¢hT" — @17 1)/ At]| is
bounded by maxo<i<n—1 /(¢4 — @)/ At||oo. Therefore, under the L>°-assumption, we can
combine Lemma 3.4 and 3.5 to obtain the error estimates for ||&; "+ and Hfg“ ||l. The
L®°-assumption can later be proved by mathematical lnductzon Follow this idea, we can prove
Theorem 3.1 in the next section.

3.3. Proof of Theorem 3.1.

Proof. Applying Lemma 3.5, the L*°-Assumption for n < T'/At — 1 and h < 1 to Eq. (3.15),
we obtain

L e o e o e
< C(AORF2 4+ C(AL® + C(ARFTY (Jlent! + €7 + [ler™ + &271)

+Can) (424 G+ 1P+ 1P+ 1P + 1)
< C(AHRPT2 4 C(AL)® + C(AHRF x

5 —fi_l
<hk+1+<m> + nax (161 + llgg + g + A 'D)

+ C(A) (I 1P + gy 17 + 1&g I + g~ 1% + 1€ 11%) - (3.17)

Here we have used the fact that ||(§ZJrl - 1)/At|| < ||(§IJrl 52))/At||—I—H((Sé—%_l)/AtH in
the second inequality above. Note that (At)3 Rkl < %(Aiﬁ)h%Jr2 + 2(At)®, inequality (3.17)
leads to

leg M I + N IP = g 1P = llg I

g -t
< CADR™TZ 4 C(AY" + C(ADRHY max (6] + €51 + €6l + 17521

+C(AL) (I + g7 + g I + g~ 1P + 1€ 1) - (3.18)
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We then apply L°-assumption for n < 7'/At — 1 to (3.16), and get
2

2
gt —¢n & -t
n+12 n+1)2 _ |en—102 _ |j¢en—12 2
5 (117 + g = e - e ) + | s N
n 2 n—1 |2
&t —¢p £ — &
< 2k-+2 n|2 n|2 ¢ ¢
< C@OMF 4 gl + g + [ 2| + 2|
+ AN (IET I+ 1E57H1%) + C(AnRP+2 + O(A). (3.19)
We further add (3.18) and (3.19) to get
. gn-i—l 54) 2
n+1)|2 n+1 2 n+1 2 n+1)2
€I + g2 + S + S g+ N
2
1 1 & -t
Clen—102 _ jjen—1}12 _ Tyjen—12 _ fpen—1)2 _ || > ¢
e % = e~ 0% = Sler I = S ’ =
< CAHORM? 4 C(AH° + C(AHR™  max (6] + 1651 + 1€ H+H7€ ‘s 1)
- 1<i<T/At P a ¢ At

1 1 -~ _ _
L <||£?“II2 TR + IR + eI + e + e 1H2>
+ ‘

Envr = [l TP+ 6P + gl + g1 +

2

€n+1 5
2 ¢ )+ CADIE I + lIEg 1 + 1€ 11%)-3.20)

At

é—d) é-n 1

+ C’(At)(| N

Let

gn—l—l £¢
At

1 n T n mn
+§(H£s“H2 F1ETHZ + 11EXN? + 11€G 1),
then (3.20) leads to
Eniy1 — B, < C(AOR*2 4+ O(AL)° + C(AL)(Eptr + En)

g -t

FO(ADRH ma <||f;r+||s;'u+u§;\+ N

1<i<T/At

Suppose we choose sufficiently small At such that C At < 1/2. Thus we have
(1-CAt)E,+1 — (1+ CAHE, (3 21)

& — &
T

< C(At)h%“JrC(A?f)BJrC(At)hngrl _uax (H€p|!+||€q|!+||§¢|!+ AL
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We then denote § = iggﬁg Since 0 < CAt < 1/2, it is easy to show that - C(At) < 2 and
6 > 1. We then divide both sides of the inequality (3.21) by (1 — C'At)§™"!, and obtain
E,.1 By CAt 1 242 4 kel
il " Gn = T_CAt gl <h {AE7T+ AT
mex (164 1gn+ 16+ [ )). e
1<i<T/At P a ¢ At

Note that (3.22) is satisfied for all n > 1. We thus add these equations over n, and get

Eny1 B oAt g(1— ) 242 (AP L F
< . A +1
ol g S T_CAt 1—7 (12492 4 (At 11
. . : g —¢t
; : : —_— . 2
e <||fp” &gl + el + [ =1, (3.23)

Using the definition of ¢ and the fact § > 1, we have

CAt 9%(1—9%)< CAt 1 1-CAt 1

. . <
1-cAat 1-% ~1-CAt 0(0—1)  2(1+ CAt)

Thus (3.23) leads to

. -
E,.1 Ei 1 ' ‘ ' S0~ &
ntl Pl 3 (hk“ max <||§;|| + 1€l + 11651l + S

At

gntl 0 - 1<i<T/At

)

+5 (h%” (At)4) . (3.24)

Also we have 0"+ = (1 + (2C- A < (1 4+ 4CAH)™ < exp(4CAt(n + 1)) <
exp(4CT'). We then apply this inequality to (3.24), and obtain

; ; ; & — &y
E, < C <h2k+2 At 4) Chk-i—l % 7 i S 5S¢
a < F(an) + o max (gl g+ gl + | g )
(3.25)
where we have used Lemma 3.3 and Lemma 3.5 with n = 0 in the inequality above, i.e.
2
1 &~ &
By = llgl® + 617 + S €N + 1617 + | =25~
1
< CAORT2 4+ C(A)° + S [I&1 + C(AL)° + C (At

IN

C(ALR* T2+ C(AL) + Ch* T2 + C(A) + CIES1” + IEH11° + 1€ 1)
Ch?+2 L C(At)*.

IN



DECOUPLED CONSERVATIVE LDG METHOD FOR THE KSG EQUATIONS 57

Note that
n+1
;(Hsg“||+usg+1\+Hsg+1||+ B 8 ) < Bur,
then from (3.25) we obtain
§n+1 £¢

1 n+1 n+1 n+1
8<H§q I+ g+ g+ | 2

)

1 &~ &5
< O 4 oAt 220 ) @32
N2 oA + 3 max gl + gl + g + | 29
Here we have used Young’s inequality. Since (3.26) holds for all n < T'/At — 1, there is
1 i i i £¢ 5
5 (IIqu gl + gy + [~ )
. ie 2
< O oant + o max (el + Nl + e + &5 6o
16 1<i<Tiac \ P a ¢ At '

Inequality (3.27) implies that

g-e!

< k+1 2
|| < onFt oA

€511 + 1€ 11+ €S 1 +

for any (n + 1)At < T. Thus we can obtain inequality (3.1) if we use the approximation
property and the triangle inequality.

Finally we will prove the L°°-assumption using mathematical induction. For n = 0, there is
P9 1loe = ITTTP° — p° + pO)|oe < [ITFPY — p||oo + |[P°[|oo < C. Similarly, we can show that
||Q2Hoo’ ||¢2Hoo < C. Forn =1, we have HP}IZHOO = Hf; - 77;1; "‘pl”oo < ||§;Hoo + ||77;1)Hoo +
P oo < C’h_l/Qﬂle,H + Ch**1 4+ C, where we have used the inverse inequality (2.3) in
the last inequality. We further apply Lemma 3.3 to get ||p; [l < CR™Y/2(RFF! 4+ (A1)?) +
Chktl 4+ ¢ < C, since (At)? < 7h1/2 and At,h < 1.Similarly, we can also show that
93 ]l0: |63 loc < €. Tn addition, [[(¢), — ¢3)/(At)lec < [|2(,0)[loc + [[(¢")za — ¢° +
(1°)? + (¢°)*[lo(At) /2 < C. Thus the L>°-assumption is satisfied forn = Oand 1.

Now we assume the L> i 143 locs 1|64l oo
(8%, — ¢ 1)/ (At)]lo < C for i < n. Therefore, we have [|€7FL]], [|€0!, H{"HH

[

| < Ch*1 + C(At)?, based on the previous proof. Thus

n n n _1
1Pp oo < 1€ oo + 1175 oo + 12" oo < CR72((A)? + K1) + CRF 4 C
< CO+h Lk 4 (AD2h2) < C
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Here we have applied the inverse inequality to the second inequality above. The last inequality

above is due to h < 1 and (At)? < ~vh2. Similarly g7 loos 107 |oo < C. For [|(#) ! —
1)/ (At)] o, we have

1 n
¢n+1 ¢n H+(¢”+1 _ ¢n) g”* % 1 )
—_ 2Pl < CH+Ch (AT At
| At - At - T A SO+ Chmz(h™ + (A7)
oo o0
< C.
Thus we have proved the L°°-assumption at n + 1, which concludes the proof of this theorem.

0

4. PROOFS OF SOME LEMMAS

In this section, we present the proofs of some lemmas in Section 3.
4.1. Proof of Lemma 3.3. Based on the definition of g, pY, ¢%, u?, z} and s}, it is easy to
show that [|€7]] = (|11 = [I€5]] = lI€a]l = [I€2] = l|&Z]| = 0. Using the definition of ¢;, and
Taylor expansion, we can also verify that Hfé” < C(At)3. Next we show the upper bound of
1€gIIP+I€5 117 Letwr = (§+E)Atin (3.4), wa = (§+E))Atin (3.5), w3 = —5(E1+E2) At
in (3.6), wy = %(f& + €9)At in (3.6), and add the resulting equations to get

eIl + NlEp 12 = lIEg11* = lIp11* = Ar + Az + As,

where
At Y At Y
M= I AENE + Dy — S D+ [+ €,
Jj=1 J=1
At Y A
SR CRRTIE S o LRI
j=1 7=1
At A
7Z<£z+sz> 6 +€0]54 +{Z<§p+£p) NGERI
Jj=1 Jj=1

Ay = /1(77; - 772)(§q1 + ég)dx + /1(77; — 7)2)(&11) + fg)dl‘ _ (At)/ %(gq + fq)
(an) / 1 (6 + ) — 5 / (7 + 7)€L + €2) — (n + 1) (€L + ) da,
I I

and

A A

M = G [k € + e - T [+ )0 +)E + s
A At

a0 [k + il + i)+ Do+ T [0+ + )6 + e
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We can show that A; = 0 due to the property of jump (2.1). For Ay, we have
1
Ar < lng —mgllllég + &Il + lmp — mpllli€p + &1l + (ADNTZ ]I + &5l

1 At At
HAOITE IS + &l + 5l + mallliez + €1+ - lInz + n2lllien + &all,
AR (gl + 1€ 1) + (AL (llegll + 1€ 1) + CADRTE(IE + 1€al)-

IN

Here we have used Cauchy-Schwartz inequality in the first inequality above, and applied
Lemma 3.1 and Lemma 3.2, as well as the fact that H§3|| = ||§g|| = 1€ = €%l = 0in

the second inequality. For A3, we first rewrite (¢} + ¢9)(py, + p0)) — (¢! + ¢°)(p' + p°) as
(0, +09)(ep +ep) + (0" +1°) (e, +€3) = (0 +¢p) (np +1p) — (D5, + 0 (Ep +E9) + (' +
p")(eg + €f), and rewrite (¢}, + ¢7) (a5 + ¢3) — (6" +0")(a" + ") as (9}, + 6h) (ng + 1)) —
(0h + ) (&g +E9) +(a' +¢°) (e, +€5). We then substitute these equations to the formulation
of A3, and it can be estimated as

A A
Ay = Tt I(@ll + ¢2)(77;1; + 772)(5; + gg)dx + Tt /I(pl —|—p0)(€(1¢) + eg)(f; + fg)d:z

A A
-5 [k o+ e + =T [ @+ a0l + ) +

CAORF T 6) + B0 (161 + €211 + 11€) + €2
At At
+ = l1p" + P lloclleg + €gllligg + &Gl + 7 lla" + "lloclleg + eglllg, + &l

AR (|93 llso + lldhllo) (Il + 11€51)
+C(AN(lIE ]+ CRE gl + g ).

IN

IN

Here we have used Cauchy-Schwartz inequality and approximation property (2.2) in the first
inequality above. Note that [|¢) [|oo = [TTT¢° — ¢° + ¢°| 0o < [[TTT 7 — ¢°||ae + [|¢°]|c0 < C,

6% — Phlloc < (ADITF G- 0) oo + (AT ((¢%)ae — ¢ + ()2 + (¢"))]/2 < C.
Thus [|¢} ||so < C. Therefore, we can estimate A3 as

Az < CAD(IE+ CRM Y11 + 11D
We now combine all the estimates of A1, Ao and A3 above to get
el + lgpl? < c(ae) (A + (a6 + lighll) (sl + gl
+OADRF (2] + N1gall)
c(at) (B4 (A02) (gl + ligl)
+C(ART (N + ligall) - (4.1)

A

IN
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Here we have used the fact that Hﬁé” < C(At)3. In order to estimate [|¢]]|* + [|&3]|*, we need
to further estimate ||€1]| + ||&L]|. Just as we derive (3.6) and (3.7), we can show that

N
fei-ehumdr = - [6 - un)ode =326 -], losle
J
+ /1 (0 — Mu)ws da, 4.2)
and
N
Jiet - = - (€} = €l do Y€}~ € ol
+ /l (12 = 12)wa da. 4.3)

Let wg = fi + 52 in (4.2), wy = fi + 52 in (4.3) and add these equations, we have

N

ISP+ AP = = (&) — e + Eada — 306 — €D, Ik + €0l
7=1
+ [k =k + € da— [ (6~ e+ da
I I
N
PICELUNEE [k =it + € e a9

To simplify the right side of the equality above, we take wy = 2(&, — &) in (3.4), wy =
—2(5; - 52 ) in (3.5), and add the resulting equations to obtain

0o~ -/ <55+52>(£;—52>zdx—z<§u+gu> -y 2 [T s

JNI 1
- [ (€ +e)(E - o - D6 - Gy o [T - s
+5 [ @+ k5 = 61+ )0 + )6}~ )
+s /I (6h + <z>2><q,£ Fad)— (¢ ¢0><q1 Fa)(E) — &)
+2 ”q "0 (€l 0)dg— 2 I ”P " (el _ ), 4.5)

I
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We then add (4.4) and (4.5) and apply the property of jump (2.1) to get
IS+ I = [ k= )(eh + Edw+ [ (k= a)(el+ o

/ %(gp gg)dx+2/ITpé(f§ —§2)daz
+ /]<<¢h + 00+ 1h) = (61 + )@ + 1)) (& — )

+5 [ @+ e+ ad) - (¢! + e+ (e — o
+2 ]”" e n 2 [P e @)

To estimate the upper bound of ||£}||? + ||¢1|?, we denote each line of the right side of (4.6) as
Uy, Uy and U3, respectively. Wy can be estimated using Lemma 3.1 and 3.2. That is,

Uy < CAORT(llgl + 121 + CAD (I + llgg1)- (4.7)

Since (6} + 900} + ) — (8" + 0))(p* +1°) = (6} + B)(eh + Q) + (' + 1) e} + €9,
we have

Wy < (\\¢h\\oo+\|¢h\\oo)(!!ep\\+HepH)H€pH+ (Il + 1" lloo) lleg | + lleg I,

C(& 11+ CRMYIE | + C(RE + (AN |1 + CRM I, |
< Cl&I? + O + (A&, (4.8)

IN

where the second inequality is due to the fact that ||} ||, [|¢7]|cc < C and Hn(} - 772” <
C(At)h**+1. Similarly, we can also derive that

Uy < Cl&GI2+ O™+ (an?)ligl. (4.9)
Now we apply all the estimates (4.7)-(4.9) to (4.6), and have
%(H&i\l eI < lleall® + Ngz 112
CIE I + 11gg11%) + C(R* + (Al + lIgg 1) + CAHRMHE (el + 1€
< O(I& I + N1gg 1> + n?+2 4 (At)h) + %(Ilﬁill +EN)? + C2 (AL R*2. (4.10)
The last inequality above is derived using Young’s inequality. Therefore, (4.10) leads to

(éall + 162102 < CUEIP + 1E511% + 22 + (An)*Y) < CIEN + &1 + R + (A)*)2.
We thus have

IN

IEull + 11EX1 < CUIEM + 1€+ hFTE + (A)?). (4.11)
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Now we apply (4.11) to the right side of (4.1) to get
legI* +1Ig 1% < CAn®= + (At)*)(llgg |l + 16 + A
1
< CAHMR*E+(AnY) + (gl + gD

It is easy to show that the inequality above leads to that [|£}]|% + [|E1]|? < C(A)A?FT2 +
C(At)5, which concludes the proof.

4.2. Proof of Lemma 3.4. This proof is similar to the proof for the estimate of [|¢1]|* +[|£}]|2

in Lemma 3.3. That is, we first let wy = (£t +£271)(At) in (3.8), wy = (§T1 +£071)(At)

in (3.9), w3 = — (2L +£271) (A1) in (3.10), wy = (€11 +€71)(At) in (3.11), add these
equations and get the energy equations for p and ¢:

€ 2 + T IP = lleg ™12 = 116y~ HI? = @1 + ©2 + O3,
where
At &
- 22( (€ + G+ Dy - €7+ 87 + 6 )
7=1
At
_ 22( n+1 ' 2[ n+1+€ ]j+% . [( ;L‘Fl_i_g;t*l)( g+1+€gl)]j+§>
7j=1
At
+ 22( n+1 — [n+1_’_£ ] (}7;4’1_}_5;71) [n+1+£ ] >’

<.
Il
—

0, = /(ﬁ?“ nq )( n+1 _|_€n 1)dx+/(ng+l 77;71)( ;L+1 +§gil)d.fc

- (At)/ITq”( a4 & da - (At)/IT;( P da

At

-5 (™ D (ET + 7Y — (T 2 + ) da

and

A
= / A (s I /I O i [(F S S L

At TL n n— n n— At n n n— n n—
- /¢> h DG g 1)dw+2/l¢> (6" + "G+ G de
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It is easy to show that ©; = 0 due to the property of jump (2.1). ©3 can then be estimated
using Cauchy-Schwartz inequality, Lemma 3.1 and Lemma 3.2. That is,

Oy < g™ =g TG A T It = T+ &

(At)IIT"IIIIS”“Jr&Q 1||+(A75)IIT"HII "“+£$ 1H

(Hn"+1 T T I e + D

< (C(Alt)h’“+1 + oA+ T+ 11T + 7D
+O(AH)R(|I gt + & + 8 + €27 H)
< C(AHRHFF2 + C(AL) + CAIET 2+ 1€ 12+ 11 + 10 1%)

FC(AREF((lErtt + 07+ lleE ™ + €27,

The last inequality above is due to Cauchy-Schwartz inequality. We then estimate O3 as

O3
A
— _Tt (/[¢Z(€g+1+ez_l)( n+1+£n 1)dx+/l n( n+1+pn—1)( n+1+€n 1)d.7}>

= ( / Ghley ! +ep G + & e+ / ea" ! +q G g 1>dz)
_ (/(bh n+1_’_77$ 1)( gLJrl n 1 dx_/(bh n+1_’_ng 1)( g+1+€n 1)d$>

n(, n+l n—1 n+1 n(, n+1 n—1 n+1 n—1
—2(/Ie¢< TG g e [ g g ar )

< CAR g lloo (g ™I+ l1gg ™ I+ g HE+ Ny~ ID
+CAG (3N + CRE e+ lleg I+ g+ NIy =D
< CAOR A+ 67l (1€ 1+ 1€ 1+ g1+ gD

+C(AL (RN + l1eg M1 + Nleg~H I + g ™17 + gy~ 1)

Finally, we combine the estimates of ©1, ©2 and O3 to conclude the proof.

4.3. Proof of Lemma 3.5. Similar to the derivation of (3.10) and (3.11), it is easy to show the
following two inequalities

N

/I( LL+1 _ gil)wg dr = _/I( ;LJrl _ ;Lfl)(wg)x dx_Z( ;L+1 _ gil);‘:%[w?’]ﬁr%

j=1

+ / (= i Hws d, (4.12)
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N

/I( ?Jrl _ 2*1)w4daz = _/I( Z]Prl _ Z}il)(w4)x dx_Z( Z]’L+1 _ Z}fl);’:%[wdﬂ_%

J=1

+/(nj';“ 0" Ywy de. (4.13)

We then let wg = 771 + ¢~ Lin (4.12), let wy = £7F1 + €771 in (4.13), and add these two
equations to obtain

&M I + ez P = a7 — ez =i

= Jor —mhet e e+ [t e v et

N

_/1( g+1 . g—l)( Z+1 +£3—1)I de — Z ( g+1 . ;L—l);:_% [ 3+1 +53_1]j+%
j=1
N

- /] (G =& e + & adr =Y (G - T T
j=1

4.14)

To simplify the second and the third line on the right side of Eq. (4.14), we take wy = 2(§}, ntl_

b 1Y in (3.8), and take wy = —2(&; ntl _ 0 1Y in and (3.9), and add the equations to get

N

0 = /I( Z—H +§ )( n+l n 1) dfo( 7Zl-l-l +£3_1);+% [ ;L—&-l o g_l]j+%
7j=1
N

- /J(§g+1 +§?_1)(§g+1 _52 1 d$_z 5”“ +&07 1 J+1 [‘an fn 1]]+,
7=1

+/](¢Z( n+1 +p2 1) ¢n(pn+1+pn—1))( n+1 En 1)
/(¢h( n+1 Jrq}rlz 1) ¢n(qn+l Jrqn—l))( gH—l _ g—l)dx

gt =gt +1 —1 =t +1 1

—2/T”( o g N de+2 | TRHET - €7 da (4.15)
I
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We now add (4.14) and (4.15), and apply the property of jump (2.1) to get
€ P + ez I = a1 = Nz =17

o L A A L

+1 1 +1 1
+/ 7717; — 77(? ( n+l _ nfl) dr — /773 — ng ( n+l nfl) dx
I At p P 7 At q q

/Tn< n+1l n_l)d.%'—i-Q/Tn( n+1l Z;_l)dl'
+ [ GRET + o) = ) (G - 6
/(¢h( n+1_+_q}7lzfl) _¢n(qn+1+qn—1))( ;H—l o ;L_l)dl’.

We then take the sum of the equation above over n = 1,2, .. .. Thus we have

ERFH2 4+ 1 €27Y12 = Ay + Ag + Az + Ay + As,

where
Al _ Z/ +1 7, 1 H—l dx_‘_Z/ i+1 z 1 7,+1+§ ) ,
nitt — it z+1_,7 ,
N R AR o) v CAE

i=1

Ay = 2) /I Ti(EH — e dr 423 /I Ti(EH — g1 da
i=1 =1

M= 3 [T D = o ) (67 - ¢ e
=1
and
As = Z / S + i) — (g + ) (€ — g V).

Next we estimate the upper bound of each A; fori = 1,...,5. For A;, we apply Lemma 3.2
and Cauchy-Schwartz inequality to get

CADREE Y (et I+ eI+ eI+ 11es )

A <
=1
< k+1 7 % )
< O max (€ + 1€ (4.16)

where we have used the fact that (n + 1)At < T
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For A2, we apply the summation-by-parts formula (3.14) to get

! n n— n
M = (- o= [ -+ [ -y igas)

1 . )
AL </(77q+1 et + /(nﬁ —n)édda + /I(ng _ né)ﬁgdx>
1
_Kt (/(77; B 77;_2)53611‘ + /(U;L—H ng_1)£g+1d$>

Z/ i+2 2né+nq fpd:z:—i— Atz/ +2 2n§,+n§’2)§édw

CRAF(IEMI + €51+ €51+ NER + €5 + €51
+OTH max (6]+ 1)-

IN

Note that we have used Lemma 3.2 and (n + 1)At¢ < T in the last inequality above. Thus we
have

Ay < CHFH! o J0ax. (gl + liggIh- (4.17)

Next we consider A3. Using summation-by-parts, there is

n—1
Az = 2( Tlggdx— /I T2epde — ) /I (T —Tg_l)é’;dx>
i=2
n—1en n¢en+1 1+0 2¢1
2< T fpdx+/Tq§p dm+/T§dx/ITp§qd:E>

Z / (T — T Y elda + / TPt ds + / T”g““d:;;)

+2

< HipH eI+ 167+ lIggl + g+ 1&g D
+CT(At) pnax (&Il + Niggl)
< o@an? max (] + €D (4.18)

1<i<n+1

For A4, since

¢z( i+1 +ph ) quZ( i+1 +pi—1)
= %(5;“ &) = ot )+ 0 e — 0 0 g,
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we have

Z/Cbh Z+1 — dx—2/¢h i+1 _|_77p )( i+1 Ii,*l)d$
£ [0 e - g - Y [ b - g
i=1 =1

(4.19)

We denote each term on the right side of (4.19) as A41, Ao, Agz and Ayy, respectively. We can
apply summation-by-parts to estimate each of these terms. Firstly, we have

M= = [ el@ra— [ g de/wl OGP+ [ 67 P

/¢n n+1 de

n—1
< N SlloollEpl® + 67 lloollEpN® + D 165 = &4 Moo 17 + loh ™ llsollp 11
=2
+llghlloollEn ™I
¢i+1 . ¢i—1
2, h h i2
< O max ¢h]e, max €412+ (A0, max |B—E | n max g
o0
¢Z+1 ¢i—1
< Yh T ¥h 2
- C 1Zien ||¢h“°° +T2<m<ax 1 At 1< < 1 Hép”
oo
Secondly, there is
N R N A

= /¢hnp+77p pdw+/¢hnp+np§pdx_/¢n177p+77p )gdx

+Z/ ¢z+1 z+2+np) (ﬁ;L—l(n]ij_i_np fpd$_/¢n "+1+77£_1)§Z+1d33-

Since

O (2 ) = &y (o, %) = (0 = by ) ) + 6y (T = ),
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we can estimate Ayo as

A < ORIkl lIE0l + 163 o RN + N5~ loellEg N + R ool 1)

n—1 n—1
i1 i1 . . . - . . .
+ D Ml = dh Mool + b IIEN + D 6k ool — my 2 1IE)
=2 =2

k+1 ‘ ‘ k+1 Oh '~ Ok S
< ’ ; A+ Z p
< OW*Y max [[9hlle, max )]+ O (AL max |1 F— 2 1%
0o 1=2
n—1
i k+1 )
+ 28 Ikl OO 3 I
1=
k+1 ' ; k+1 ‘Zﬁjl - %_1 '
< i ) L N L v .
< ORIl o, Il + R0 amae | P e, M6
[e.o]

Thirdly, we can follow the same idea to estimate Ayg, i.e.,
n
Aiz = 2:/1(10“rl +p g (G — g de
i=1
= - /I(p2 +p°)¢5énda — /I(p?’ +ph)EEpda + /I(p” +p e d
n—1
-2 /1 (2 + )65 = 0 + P25 ) gha + /I (™t + "G da
i=2

We can rewrite (p'*2 —I—pi)féfl — (pi_i_pi—?)f;—l as (p2+pt) (g(z;rl _52—1 ) -I—{f;l (pi+2 —pi=2),
Thus, the inequality above leads to

Az < CH%HHfSH+CH££HH§;H+C§!!§;+1—£;‘1\\|!§;\\
1=2
+O(AHRF nzl leg gl + Clieg gl + Cliéglie, ™
=2 ' -
< 0 I 16O | S| 1
+CRFEH  Jax e - ,nax [ts41 | |
< Ol e I3l +C, max b e, 161
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where the last inequality is due to the assumption that A < 1. Fourthly, we can also get

Ay = —Z/ ZH%—ﬂ 1 77¢( i+l _ Zfl)dx
= /(p2 + " )ngépda + /(p3 +phyns&de — /I(p” +p" )y da

+Z/ z+2_|_p H—l (p +pz 2) )€pd$ /I(Pn+1+pn1)77$ ;zﬂdx‘

Note (p*2 +p gt — (b + 92t = (02 4 p) 05" — o) 40 0 = ).
Thus, there is

Ayy

IN

CHHlIEI + 11D + ChF T max Il + CRE (Il | + [lgy 1)

< Chk+1 i )
< O max 6]

We now combine all the estimates for A1, Ao, Asz and A4q to obtain

S =S i
At 1§r?§a5(+1 ng”
oo

+Chk“113ax (A max. g+ Cnt max g

Ay < (C max |¢illoo +T  max
1<i< 2<i<n—1

1<i<n 0<i<n
. ¢z+1 _ ¢z—1
+1 h h i
+Ch 2§I?§arf(—1 At 251?3{—1 ”§p||
(o)
§Z+1 é—i—l
i i ¢ i
+O max €], max 6]+, max 20— max lgh|
< C |1+ max [|¢}]lc + m A 1511 + R+
- 1<i<n 2<i<n—1 At 1< < +1 p
o0
z+1 51, 112

+C' | max ||§fb\|2+ max

i2
1<i<n 2<i<n—1 +  max ||fp”

1<i<n+1

At

Here we have used Cauchy-Schwartz inequality in the second inequality above. Note that Aj
can be obtained if we switch p and ¢ in the formulation of A4. Thus we can estimates A4 + A5
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as
il _gis , 1\
A+As < C <1rga<x I€6ll +, max [I=5— +1Sry§a§+1(!!€;\! + H€3H)>
+C (1 + max |5 Nl oo +2<m<ax . W ) X
2
(GGl + ) + 14+ @20)

With the inequalities (4.16), (4.17), (4.18) and (4.20), we can get the upper bound of ||¢7F1||2 +
l€2+4]? as

&1 + flez 2
< CRME max ([l6 ]+ IIEID + O+ (A8?%) | max (1G]] + &)

1<i<n 0<i<
Z+1 é- 2
i i
+C (Igzax 1661+, max || ==—==tm | 4 max (I6] + !@H))
) ¢Z+1 gb%_l
Z —_—
+C (1 + 1?%}% 16hlloo + 2§I?§n—1 At x
D

2
k+1
(1< i<n +1(H§pH + H§q||) h ) .
Since 3 (||€" +1H+H§Q+1H)2 < [lentt? 2, we can replace the left side of the inequality

above Wlth LI+ + [[€2F11)2. Also, because the inequality above is satisfied for all n, we
can further apply Young’s inequality to get

1 2
3 (,max (€00 + 12D

1 2 ‘ N
(L (lebl+ 15D )+ Cn242 4 cant+0 (max (1651 + 1€))

IA

4 0<i<n+1
i+ _ giml 2
¢ i i
e <max legli+,mas |2+ ma (€ + ||£q||)>
i+1 i1
h P

J-

+C (1 + Joax |00 + pnax

At

2
( max (Hé,’;||+||£qll)+h’““> .

1<i<n+1
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Therefore, we have

1 (100 + ||5’||>)2

< C(’I’““HN) + Jnex (|\£Z||+||€’||)+ max €G]+ max

2<i<n—1
)x
oo

éés—i_l _ ’Ez’— 1
At

>2

i+1 i—1
¢, — ¢y

2<i<n—1 At

+ C <1+ max 0% lloo +  max

1<i<n+1

2
< max <|rs;,||+us;||>+hk+l) ,
which leads to

max ([l + [1€21)

1<i<n+1
< O 4 O(At)? +0  max (||€pH+|!€qH)+C max H€¢||

o=l
At

i+1 i—1
& s¢,

+C max Az

2<i<n-—1

<1< (1611 + g1 + hkﬂ) |

It is easy to see that the inequality above implies the conclusion of the lemma.

1
2
X
00

+C <1 + max [EZAs +2<m<a7zl>< )

4.4. Proof of Lemma 3.6. Let ws §"+1 §Z‘1 in (3.12) and wg = (€71 4 €771
in (3.13). We then add the resulting equatlons to get the energy equation for the Klein-Gordon
equation part:

2

n+1 n—1
g |e-g” S IEIR = eI + et - Sl
At At 9 !1>s 2'1%¢
= Ai+ Ay + Ag,
where
A = - ( Jlertatig g e+ [ - g 2+1+521>xdx)

)

N = N =

WE

(@ e g —g+ (G g @ +a™)
1 :

<.
Il
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n+1 n—1

_ n¢ __2n¢ +_n¢ n+1 n—1 1 n+1 n+1 n—1
he = [BREEt —g de +g [p e - g e

- [ g e g fort e e e

and
M= [ (00 + @2 = 0 = (@) (67— &)
It is easy to show Ay = 0 using property of jump (2.1). We then apply Lemma 3.1 and 3.2 to
get
Ay < CRMHEE — &t + C(AD|Ept — &5~ + CADRF (Il + 1)

2

£n+1 én 1 -
+ €2 + lleg

< 2k+2 4
< (A [ K22 4 (ant + N

For A3, there is
M= [ - e - g e+ [ ) (e — € e
C(1+ [Ipploo) (g1 + R HDIIERT — €57
+C(1+ [lgilloo) (€L 11 + REFIERHT — €5
< O+ Iphllo + lailloo) (IR N + N5 11+ BEEH I — &5
§n+1 gn 1
At

IN

2
< C(A)A+[[phlloo + laklloo) [ R 72+ I + 16717 +

Finally, we combine the estimates of A;, A2 and A3 to conclude the lemma.

5. NUMERICAL TESTS

In this section, we test the numerical performance of our proposed decoupled conservative
local discontinuous Galerkin method, including the convergence rate, conservation property of
energy and Hamiltonian, dispersion and dissipation errors. We then compare the performance
of the decoupled LDG method with the undecoupled LDG method in [16]. We perform the
numerical experiments using the following solitary wave solutions:

p(z,t) = 3sech?(z + ?t) Cos(—\{f&c + (13613 t),
q(z,t) = 3sech?(z + \ggt) sin(—\{lg + ?ét) (6.1
d(z,t) = 6sech?(x + \ggt)
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To test the convergence rate of our proposed scheme, we take p(z,0), g(z,0) and ¢(z,0)
in (5.1) as initial conditions, use I = [—32, 32] as the computational domain, run the simula-
tions up to 7" = 0.1 and compute the L? errors. In order to make the spatial errors dominate,
we choose very small time step size, i.e., At = 107%. As far as the spatial mesh size h
is concerned, we start with 64 elements so that h = 1, and then refine the mesh uniformly
into 128 elements and compute the L? errors. We process this way to the cases of 256 and
512 elements. Suppose we fix a k, and the computed L? errors corresponding to the mesh
size hq and ho, are 1 and FEs, respectively, then we can estimate the convergence rate using
log(E1/FEs)/log(hy/hs). The L? errors at T = 0.1 and convergence rates of the decoupled
LDG method are presented in the following table:

From Table 1, we can observe the (k + 1)* (k = 1,2 or 3) order convergence rate when
Dhs Qs O1 € V}f is used. If we compare the L? errors and convergence rates in Table 1 with
that of the un-decoupled LDG method in Table 7.1 of [16], we can see that both methods lead
to quite similar errors and convergence rates. In other words, they both produce the optimal
convergence order and comparable L? errors.

Next we consider the conservation properties of the decoupled LDG method. We run the
simulations using Vh2 space, 512 elements and time step size At = 10~%. Due to the temporal
derivative in the formulation of Hamiltonian (1.4), here we use % to approximate ¢y, ;

o2
o !

AL +

at t", so that the discrete Hamiltonian is given by H (t") = %”¢ZH2 + %

st + Nl l® + 120017 = [ (02 + (g)?)¢lidx. The total energy at ™ is obtained by

TABLE 1. L? errors at T = 0.1 and convergence rates of the decoupled local
discontinuous Galerkin method. py, g, ¢ € th withk =1,2and 3. h = 1.

p q %
3.763E-1 - | 3.001E-1 4.491E-1

8.321E-2 2.177 | 5.508E-2 2.446 | 1.626E-1 1.466
2.025E-2 2.039 | 1.218E-2 2.177 | 4.152E-2 1.969
5.037E-3 2.007 | 3.040E-3 2.002 | 9.977E-3 2.057
8.230E-2 - 3.124E-2 - 1.430E-1 -

8.112E-3 3.343 | 5.358E-3 2.544 | 1.447E-2 3.305
9.864E-4 3.040 | 6.223E-4 3.106 | 1.927E-3 2.909
1.231E-4 3.002 | 7.833E-5 2.990 | 2.366E-4 3.026
3.817E-3 - 8.726E-3 - 7.642E-3 -

7.145E-4 2.417 | 5.218E-4 4.064 | 1.365E-3 2.485
4.652E-5 3.941 | 3.036E-5 4.103 | 8.790E-5 3.957
2.930E-6 3.989 | 1.916E-6 3.986 | 5.501E-6 3.998

(00| S | 00| ool TSI D pol R[Sl o




74 YANG

%1013 %1010

15 2 “0 05 1 15 2

0 0.5 1
T T

(a) Relative error in the total energy

(b) Relative error in the Hamiltonian

FIGURE 1. Relative error in the total energy and Hamiltonian when Vh2 with
spatial mesh size h = 1/8 and temporal mesh size At = 10~ are used. Left:
the relative error in the total energy. Right: the relative error in the Hamilton-
ian.

computing E(t") = [, ((¢}")* + (p}})?) dx. The relative errors of the total energy and the
Hamiltonian are shown in Figure 1.

Here we use the approximation space V; for py,, g, and ¢y, the spatial mesh size h = 1/8
and the temporal mesh size At = 10~%. Figure 1(a) shows that the relative error of the total en-
ergy is at the magnitude of 10~13. That is, the total energy is conserved up to machine epsilon.
This is consistent with the conclusion from Theorem 2.1. Figure 1(b) shows that the relative er-
ror of the Hamiltonian is conserved up to the magnitude of 10710, According to Theorem 2.16
and Remark 2.1, we can see that H(¢") is not exactly conserved, but its conservation depends
on At and the accuracy of numerical solutions. We then compare the conservation proper-
ties of the decoupled LDG method and un-decoupled LDG method in [16], and find that the
two methods lead to similar relative errors. To investigate the subtle difference between these
two methods, we further compute the relative errors of total energy and Hamiltonian at several
discrete time, i.e., t = 0.5, 1, 1.5 and 2. The results are given in Table 2 and 3.

As we can see in Table 2, even though the relative errors of our decoupled LDG method
is slightly larger then that of the un-decoupled LDG method, both methods lead to satisfying

TABLE 2. Relative errors of total energy for our proposed decoupled LDG
(D-LDG) method and un-decoupled LDG (U-LDG) method for various 7'.

T=05 T=1 T=15 T=2
D-LDG | -7.439E-14 | -5.931E-13 | -7.376E-13 | -8.190E-13
U-LDG | 2.220E-16 | -1.288E-14 | -4.552E-15 | -2.354E-14
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energy conservation property. The results in Table 3 show that the Hamiltonian conservation
property for both methods are also similar. At 7" = 1, 1.5 and 2, the relative error of the Hamil-
tonian of the decoupled LDG method is even smaller than that of the un-decoupled method.
We then compute the ratio of the relative errors for both methods at 7' = 0.5,1,1.5 and 2.
The results are presented in the third row of Table 3. It is easy to see that the ratio is decreas-
ing, which means Hamiltonian conservation of our proposed decoupled LDG method is better.
Based on the observation from Table 2 and 3, we can draw the conclusion that overall speak-
ing, the decoupled LDG method leads to slightly larger error in the energy conservation (even
though it is still at the magnitude of machine epsilon), but slightly smaller error in the Hamil-
tonian conservation. If we use Vh2 basis for py, gi, and ¢y, the spatial mesh size h = 1/8, the
temporal mesh size At = 0.01 and run the code for 7" = 10, then the relative error in energy
is at the magnitude of 1014, and the relative error in Hamiltonian is at the magnitude of 1076.
If we further refine the time step At, then the relative error in Hamiltonian will decrease to the
magnitude of 10~?, which indicates the good conservation property of our proposed scheme.
In addition, we investigate the dispersion and dissipation behaviors of the decoupled LDG
method. The ability of preserving the dispersion relation is an important criterion of judging the
performance of numerical methods for the wave simulations. The authors in [26] have demon-
strated the dispersion and dissipation behaviors of the two types of discontinuous Galerkin
methods for linear wave equations. Here we compute ¢ and |¢|?> = p? + ¢®> at T = 2 and
investigate the dispersion and dissipation errors of the decoupled LDG method when Vh2 space
is used. The exact and numerical values of ¢ and |¢)|? are plotted in Figure 2. We observe
that the numerical solution can capture the magnitude and the phase of the solitary wave accu-
rately. To quantify such dispersion and dissipation behaviors, we need to find the location of
the peaks for ¢y, and |4|?, and the magnitude of the peaks. When we use 512 elements and
At = 1074, we can find that ¢, achieves its maximum in the 243" element. In this element,

J— . p— . 2 . .
we can represent ¢, = a + bzh?] +c (mh;]) , where j = 243 and x; is the center of this
J J

element. Therefore, the maximum of ¢y, is at = x; — hjb/(2c) ~ —1.732054284140232.
Since the peak of the exact solution ¢ is at z = —+/3, we can now compute that the absolute
and relative dispersion errors are approximately 3.477 x 1076 and 2.007 x 1075, respectively.
In addition, we can compute the maximum of ¢, to be 5.999989137826894. Thus the absolute
and relative dissipation errors are approximately 1.086 x 10~ and 1.810 x 1075, respectively.

TABLE 3. Relative errors of the Hamiltonian for our proposed decoupled
LDG (D-LDG) method and the un-decoupled LDG (U-LDG) method for var-

ious 7.
T=0.5 T=1 T=1.5 T=2
D-LDG | -1.042E-10 | -9.052E-12 | -7.000E-12 | -1.295E-11
U-LDG | -8.328E-11 | -1.104E-11 | -2.170E-11 | -8.997E-11
] Ratio \ 1.251 \ 0.820 \ 0.323 \ 0.144 \
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We then compute the dispersion and dissipation errors of [t/|2. Since py, qn € Vh2, we
know that |¢4|? is a quartic polynomial at each element, and it obtains its maximum at the
243" element. We thus solve the maximization problem to find that [1/|? obtains its maximum,
8.999959738979777 at x ~ —1.732053375. The absolute and relative dissipation errors of
|¢|? are approximately 4.026 x 10~° and 4.473 x 107, respectively. The absolute and rela-
tive dispersion errors of |1/|? are approximately 2.567 x 1075 and 1.482 x 1079, respectively.
To summarize, all of the numerical results above, including the accuracy tests, time history of
energy and Hamiltonian conservation, and the dispersion and dissipation errors indicate that
our proposed decoupled LDG method leads to high-order accurate, energy- and Hamiltonian-
conserving numerical solutions which preserve the dispersion and dissipation properties. Over-
all speaking, the numerical performance of the decoupled and the un-decoupled LDG methods
are quite similar. Since the decoupled LDG method is more suitable for parallel computing,
this method is a good option for solving the Klein-Gordon-Schrodinger equations.

8 n —t |
N

6/ ey
4,

2, 1
O—L

-5 0 S
X X

FIGURE 2. The exact and numerical values of ¢ and [¢/|? at T = 2. In both
figures, the solid line and the dotted line represent the exact and numerical
values, respectively. Left: ¢. Right: [1|2.

6. CONCLUDING REMARKS

In this paper, we propose a decoupled conservative local discontinuous Galerkin method for
the Klein-Gordon-Schrodinger equations. We prove the optimal error estimate of the fully dis-
crete scheme. A key component of the proof is the L*°-assumption of the numerical solutions
up to the n'" time level. With such an assumption, we can show the optimal convergence rate
of the numerical solutions at (n 4 1) time level. The assumption can be further proved by
mathematical induction. Our proposed LDG method also has provable energy- and Hamilton-
ian conservation properties. Both the mathematical proof and numerical tests show that the
total energy is conserved up to machine accuracy. However, the Hamiltonian has be computed
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using finite difference approximation in time. Numerical results show that the conservation of
Hamiltonian depends on the time step size At and the spatial mesh size h. Compared with the
un-decoupled LDG method, our decoupled LDG method leads to comparable accuracy, dis-
persion and dissipation behavior, and slightly better Hamiltonian conservation. Unlike in the
un-decoupled LDG method, in our proposed method we can update ¢} and (p}, ¢;') simulta-
neously at each time level n for n > 2. Therefore, our method has the potential to improve the
computational efficiency if parallel computing in time is used, which is left for future work.
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