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Abstract

In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum

dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si

quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the

multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field,

which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to

let the system settle down to the symmetric orbital state.
acoustic phonon process.

Estimates of the decoherence time is made for the longitudinal
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I. Introduction

It is well known that the lowest conduction band of
an ideal Si crystal has six equivalent minima of
ellipsoidal shape along the [100] direction as shown
in figure 1. These ellipsoids are often called as
valleys and the total wave function of the ground
state is obtained from a linear combination of the six
wave functions each localized around one of the

A, conduction-band minima. The overlap of wave

*Corresponding author. Fax : +82 2 2210 2692

e-mail : dahn@uos.ac.kr

functions associated with different valleys is assumed
to be negligible.

In the study of early quantum structures such as n-
channel inversion layer on the Si (001) surface, it was
found that the broken translation symmetry lifts the
six-fold degeneracy into the two-fold degenerate
valleys located near the X point in the <001>
direction in the k-space and the four-fold degenerate
valleys in the direction normal to the surface [1].

In addition, there were experimental observations
[2-4] of anomalous structures in the gate-voltage
dependence of the conductivity of vicinal planes of Si
(100) n-channel inversion layers. It has been
suggested that these anomalous structures are caused
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by the lifting of two-fold valley degeneracy in the
<001> direction as a result of valley-valley
interaction [5,6]. The splitting is turned out to be
proportional to the gradient of the confinement
potential normal to the surface [7].
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Fig. 1. The lowest conduction band of an ideal Si crystal
with six equivalent minima of ellipsoidal shape along the
[100] direction.

It would be an interesting query to ask whether the
inter-valley coupling is controllable. If that were
possible, it would permit us more degrees of freedom
in silicon technology. It could also lead to the
potential applications to the silicon based quantum
information processing. So far, most of the existing
proposals for the solid state quantum bits (qubits) are
based on the electron spin confined in the quantum-
dots [8,9], coherent quantum state in a Cooper-pair
box [10], or the nuclear spins of impurity atoms
implanted on the surface of Si [11,12]. For the latter
it still remains an experimental challenge to fabricate
a structure in which each nuclei can be effectively
manipulated. Recently, there have been observations
of coherent oscillation of a charge qubit in a III-V
double quantum dot [13] and stacked coupled
quantum dot structures [14]. These results suggest
that the controlled evolution of superposed charge
states could be possible in the semiconductor
quantum dots. In order to implement the solid state
quantum computation, however, it is required to
minimize the decoherence effects on the coherent
quantum states or qubits [15]. Potential drawbacks of

these compound semiconductor charge qubits are
relatively short decoherence time and difficulties in
fabricating double dots. There would be several
merits of a silicon implementation of quantum bits if
it is possible. First of all, the crystal growing and
processing technology for Si is quite matured.
Secondly, some of the scattering processes which
contribute to the decoherence such as intra-valley
optical phonon processes are forbidden inherently
from the group theoretical considerations in the case
of silicon and within each ellipsoid (intra-valley) is
limited to acoustic phonons and impurities [16].

II. Theoretical Model

Let’s consider the quantum dot of cube geometry
with the z-direction assumed to be along the Si (001)
surface. Based on Kohn-Luttinger effective mass
theory [17], the envelope function for the quantum
states in a Si quantum dot is given by

F(7) =Y F(k)exp(ik -7) (1)

and

F(k)= 2 o F (k) @

where F)(k) is centered about the ith minimum.
The constants ¢, can be determined from the group

theoretical considerations [18-20]. The equation of

motion for F;(/_c.) becomes
s (K)E(K)+ Y, > D} V(k -k )F(k') = eF(k)
7
3)

where &(k) is the energy dispersion relation of the
i-th valley, V(/_C.) the Fourier component of the
total potential, and ka is the inter-valley coupling

term which can be derived from the cell periodic
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function for the conduction band.
Then within the frame of multi-valley effective
mass theory [21 ,22], the equation of motion for

Ar)= ZF (4) exp(zk 7) can be written down

as

[z~ + n7) - £y + L, . IV)F 7)=0

’#l
C)
Here,
R F W T R 3 ihB 8 ihB D
AN =252 o7 am o7 2w w 2m oy
22(z.2)
”I}, m, (5)
and B
"y (7,=V)
1, exp[-i(K,— K, )-FIAF)) (6)
~i(J, -Vyexp[-d K, - K, )- FY V(7))
+exp[-i&, = K, ) FY VPN , - V)
and
NF) = V(7)+ eF 7 @
where #2,,m L, M, are effective masses along x, v,

z directions in each valley, £ is quantized energy,

—

K , is the wave vector at the minimum at the /-th
Ly Iy, Sy are

V. (7) is the quantum dot confinement

valley, inter-valley coupling

terms,

potential, and F isan applied electric field.

III. Numerical Results and Discussions

We have solved equations (4) to (7) for the Si
quantum dot structure mentioned above numerically
and considered potential quantum bit operation
utilizing the inter-valley interactions. Quantum dot

potential i1s assumed to be infinite at the boundary
and zero inside the dot in the absence of an applied
electric field. In this work we considered a quantum
dot with the dimension of 8 nm, 12 nm, and 6 nm in
X-, y- and z-directions, respectively. In this structure,
the ground state is associated with doubly degenerate
valleys 5 and 6. When the weak static magnetic field
is applied along the growth direction, the ground state
wave function is composed of the linear combination
of p-like 7 states [24], the irreducible

representations of 7, symmetry of the Si crystal.

These orbitals satisfy the following effective
Hamiltonian in the interaction picture:

[6(F) A

“lae &p) ®

Here & is the energy difference between symmetric
and anti-symmetric states, A is the inter-valley
coupling, and /" is an external electric field along
the z-direction. When /=0, both & and A are
zero and the total state remains as it was because
there is no inter-valley coupling. In this simple model
we have neglected the coupling of orbitals between
different axes. For example, the coupling between
valleys 1 and 5 (x-axis and z-axis) is found to be a
million times smaller than the coupling between the
valleys 5 and 6 (both are in z-axis). If we apply an
external electric field to the quantum dot, the inter-
valley interaction is turned on and doubly degenerate
ground state is splitted. The crystal momentum
necessary for the electron states between the valley 5
and the valley 6 to be coupled is provided by an
applied electric field along the z-direction [16].

In Fig. 2, we plot the energy difference &
between the symmetric and the anti-symmetric states
as well as the inter-valley coupling energy A which
is defined as A(F)=</F;| H |/ >. In this
figure, one can see that the inter-valley coupling is
increasing rapidly with the electric field. For
example, the calculated values of & and A are
63.5ueV and 31.6 peV, respectively, when F=400

kV/cm. When F is increased to 500 kV/cm, we
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Fig. 2. We plot the energy. difference & between the
symmetric and the anti-symmetric states as well as the
inter-valley coupling energy A of a Si quantum dot as
functions of the electric field.

have A=43peV.

If we turn on the electric field and wait long
enough, then the system will be in the symmetric
state which will be denoted as |0>. The coherent
evolution from the symmetric state [0> to the
anti-symmetric state |1> could be observed by
applying the sharp voltage pulse to the pulse gate as
has been done for the Cooper-pair box [10] or the
double quantum dot structure [13,14].

The coherent oscillation of the system is expected
with  the angular frequency given by

Q=& +A*/h , which corresponds to the
microwave frequency of 17.2 GHz. When the system
is evolved to the state |1> and if we turn off the
electric field / adiabatically, then the inter-valley
coupling is turned off and the resulting state would be

the anti-symmetric orbitals which would maintain its
phase coherence until the decoherence destroys it.

Figure 3 shows the first 6 energy levels associated
with valley 5 (or 6) in solid lines, valley 1 (or 2) in
dashed lines, and valley 3 (or 4) in dotted line as
functions of increasing electric field. Weak magnetic
field of 1.5 Tesla is applied along the z-axis. The
dimension of the quantum dot used in this particular
calculation is such that the ground state is associated
with valley 5 or 6 in the absence of an external field.
It is interesting to note that the slopes for the valleys
1 and 3 are similar but they are different from those
of the valley 5 because of the effective mass
difference along the field direction. The energy states
are labeled for the single valley case, that is, when the
intervalley coupling is ignored. Part of the ground
state energy level is magnified and shown in the
small box inside the figure 3. One can notice that the
ground state energy is further splitted into symmetric
and anti-symmetric states. It is interesting to see that
E; and Es associated with valleys 5 and 6 show
anti-crossing at point D with increasing electric field.
The inset shows the magnification of point D.

At low electric field, E; is pushed up while Es is
showing the negative shift with increasing electric
field until anti-crossing point D and their behaviors
are changed the other way around after passing D.
Similar behavior was observed in the case of
quantum well with applied electric field [25]. The
insets of Fig. 3 shows a magnified energy diagrams.
We first consider the symmetric and anti-symmetric
states associated with E; (point C). Initially, we set
the electric field at a low value (point A) so that the
transition between two states is difficult to occur (Fig
2) due to a relatively small transistion probability.
The electron in the quantum dot is in the ground state
When the gate bias is switched to a higher electric
field (point B), the time evolution between two states
begins.

The time interval of the pulse determines the
relative population of two states and they remain at
the final values when the pulse is switched back to A.
The rise time of the pulse should be shorter than
h/A atA andlongerthan 7i/A atB.
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Fig. 3. We plot the first 6 energy levels associated with
valley 5 (or 6) in solid lines, valley 1 (or 2) in dashed lines,
and valley 3 (or 4) in dotted line as functions of increasing
electric field. Weak magnetic field of 1.5 Tesla is applied
along the z-axis. The insets of Fig. 3 show a magnified
energy diagrams.
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