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§1. Introduction

The differential game is a mathematical decision-aid tool in a

conflict situation which evolves over time. The model has been
applied widely in managerial problems including investment,
production, marketing. Jorgensen( 1985) provides an excellent survey

for applications of the differential game model. In order to apply
the theory to the analysis of economic competition, where mutual
interests play a significant role, nonzero-sum formulations are
mostly appropriate. Zero-sum game models usually rule out the
possibility of mutual benefits between the conflicting parties
[Ciletti and Starr(1870)7.

Although necessary conditions for an optimal solution of the
differential game problems may be derived by an application of the
maximum principle of optimal control theory, it 1is, in general, very
diffiemlt to find an  analytical solution for the necessary
conditions. The set of necessary conditions of an optimal solution
Lo differential game rroblems requires solving a system of
differential equations. dolution Methods and existence proofs for
simple differential games are found in Starr and Ho(18869),
Friedman(1971), and Neese  and Pindyck(1984). Simman and
Takayama(1978) gives an example for a single state linear—-quadratic
game with constraints. For operi-loop nonzero-sum differential games,
Snalzo(1974) proved existence for any finite duration. Scalzo’s work
has beeri extended by Wilson(1977) and Williams(1980) to games with
inecomplete information and by Scalze  and Williams(1978) to games with
nenlinear  state  eguatioms. All three extensions dealt with the
inite horizon case

With the assumptions  oF  continity, convexity, and compactness,
this paper shows the existence of a Nash equilibrium for a more
general  class of  differential  games. T prove it, the Kakutani
theorem is applied after discretization of the problem. The

rationale for a period-by-perind operation of multi-period problems
is provided. using a dynamic programming approach.



82. Differential game problem

We first define a gensra! ftvpe of the nonzerc-sum  Swo- person
differential game . Let subooript todennte  time. and superseript
on functions and subsecript for varisbles or parameters  stand  for
player i. The state variable at time t, Ze2{7p . % ). 1S governerd by a
system of the first order differertial eoguations,

(1) EIE- N ERIN iz1.2.
where ut:(qt,uzp are the control varisbles. The 1initial states at
time 0 are assumed to be known. The plavers set the control

variables to achieve a desired state. They may have a limitation in
setting the control variables. We assumz the realized states at time
t determine the control space for each player.

(2) (up € Qit,zp. i=1.2.

A strategy, (uy) is admissible if it belongs to the space defined by
the incumbent state, z;.

The game begins at some initial time and state (0,z ), and
terminates at (T,2;). The terminal time T can be chosen freely. If T
is a pre-specified point in time. the payoff to player 1 over the
finite horizon is given by

(3 Iz ,up) = SMTozp) + | e Thict, 2 000de, i1,2
0

where sl is a real wvalued function representing player i's salvage
value at T if the terminal state of the game is z;, and £ is a real
valued function on (t,z.,u)-space. The functions S!, f! are also
assumed to be of class C° with respect to their own arguments. The
objective for each player is to select a control strategy which
maximizes J* .

In (2), we denoted the set of admissible values for the control
variables by Q‘(t,z@. For the problem to be defined in a more
manageable setting, w= shall further assume that the control
variables must satisfy the following constraints,

(4) Motz o000 is1.2,

where h' is a real-valued. third order differential function with
respect to all the arguments. The admissible control spaces are now
assumed to be expressed hy a Form of {43,



83. Existence theorem

The problem described in the previous section can be written in a
discretized form as follows,

i T™1 . i T é
Max  J' = 5 4 (1+c¥ ez g ) + (1+rd 8(zp)
{Ui}
(Pi) subject to,

zZig - Zjp =8 Nzpny) 3=1,2,  t=0,...,T-1
|
h'(g.uy) 2 0 ,t=0,....T-1.

The groblem is now to find a sequence of equilibrium contrgl vectors,
{u }f;%, and hence a sequence of the state vectors, {q}tzo, which
maximizes the objective function. Define a function W as

Wy, o) = Sl (LY Réz yu) ¢ (LryTstz g
and
Vicg.t) = Max (1407 (zy,0) + V¥ [z (7.0 ), t+1]
{ue}
(SPit) subject to,

z{,tﬂ - Zijt :gi(zt,ut) ,j=1,2,
h (%»Ut) Z 0.

Vi(q,t) represents the optimal objective value from t to the terminal
time period if the incumbent state at t is z . We write 2,2, ) to
show explicitly that 2y depends on zy and y. The subproblem of
player i at time t, (SPy), is to maximize his payoffs from time t to
T for z; given. Note Vi(.,T) = (1+r)'si(g).

The following theorem provides us with a basis for the claim that
a period-by-period solution consists of a Nash equilibrium for the
original problem.

THEOREM 1. If uf is a Nash equilibrium to (SPy), for t=0,...,T-1,
then {u:}zzé is a Nash equilibrium to the problem (P). Therefore, if
(SPj) has an equilibrium solution due to Nash for all the subperiods
t, there exists a Nash equilibrium point to the problem (P).

PROOF. At t=T-1, Vi [a(zpy,u;),T] = (1+r37si(z). Since v}, is a
Nash equilibrium to (SPqu) for a given feasible 2y,

(1) M8z Lpulp + Vig(zruh), 1 2 Wapgupy
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where ury = (g1 ,lf_i,H), i.e., any admissible strategy for player i
while the other player’'s Nash equilibrium policy remains fixed. From
now on, we denote u; for (g ,u.'i’t). At any time,

+r) e izut) + Vigg, (zud,te1]
(1)l zpu ) + Viggy zyuy),te1]
()t i(zu,) + W (RefZ¢5U¢) 04y . . .0 1P
¥ (zpupae ...

v v

But we know that

(1) i(zyuty + Vipg, (zud, 1)
()i zputy + Wiay (zud,uly ... 4
wl (;,u{,?ﬂ, L

THis implies that W (z,ru‘ .ouky 12 Wz gy . up). In other
words, a strategy, {UL}T;£, provides player i with'%he maximum payoff
if {,}3? other player chooses a strategy of {u"i.d}T:t' This implies
{u‘,}T:t, consists of a Nash equilibrium policy to (P). ;ﬁ'

THEOREM 2. (SP;j¢) has a Nash equilibrium if (i) £ and $? are
continuous in Uy, and concave in_ gy, (11) g7,321,2, is 1linear in
Ui+, and the Hessian matrix of vl with respect to Zy4q1 1s negative
semidefinite, and (iii) the furictions h' are convex in uje, i=1,2,
and Dt={(zt,ut)|h1(zt,ut)20} is a nonempty compact convex set,

PROOF. The Kakutani Theorem is applied. Since f! and S! are
continuous, the V! is also a continuous mapping. The condition (ii)
guarantees V! to be concave in Uj¢ - Therefore, the objective
function of (SPiE) is continuous and concave in ;4. Define a point-
to-set mapping F (ut) as

Fi(ut) = {u§t| U?t is optimal for (SPit) for given uwi,t}’

and, F(ut) = leF2 = {ut}, where ut is such that U?t maximizes (SPit)
for given U_j s i=1,2. Since the objective functions are concave in
their own control variables and Dt 1s convex, the set Fl(gt) is
convex for any uy € Dt' ?To show  this, suppose u%t, u%t € Fl(ut).
Consider @iy = Buly+(1-Bf, for O =@ = 1. Then. §;, €D, by
convexity of Dt' i.e., ﬁit iz feasible. Furthermore, by convexity of

the objective function. ait should be optimal. That 1is, dip €
Fl(ut). Therefore, F is convex since the Cartesian product of convex
sets 1s also convex. From the compactness of Dt and continuity of
the objective functions. We  Ccan show that F is an upper

hemicontinuous mapping that maps each point of the convex, compact
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set Dt into a closed convex subset of D .1 Then, the Kakutani Theorem
says that there exists a fixed point up € Dt such that ut = F(ut).2
By the definition of the function F., the fixed point ut is a Nash

equilibrium. i

84_. Discussion

The above theorem states that much larger classes of differential
games have an equilibrium. The most severe assumption is the second
one. It requires that state dynamic equations be linear on his own
control variables. But, the dynamic programming approach spplied in
the sbove is hardly implementable for the purpose of computation. It
is very difficult to solve <SPit> directly. Notice, however, the
problem can be transformed into a Hamiltonian maximization problem
which is easy to solve if initial conditions are given. In this way,
it is possible to design a solution algorithm to problems with
nonlinear constraints. The above two theorems provide a basis for
such an algorithm.

!Garcia and Zangwill(1881) proved npper hemicontinuity for an economic
equilibrium problem. Following their work, the upper hemicontinuous property
of the mapping, F, for our problem can be shown. For the proof, continuity
and compactness should be assumed.

2See Garcia and Zangwill(1931) for the proof of the Kakutani Theorem by
the path-following approach.
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