• 제목/요약/키워드: h-curvature tensor

검색결과 23건 처리시간 0.024초

Curvature Properties of 𝜂-Ricci Solitons on Para-Kenmotsu Manifolds

  • Singh, Abhishek;Kishor, Shyam
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.149-161
    • /
    • 2019
  • In the present paper, we study curvature properties of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds satisfying $R({\xi},X).C=0$, $R({\xi},X).{\tilde{M}}=0$, $R({\xi},X).P=0$, $R({\xi},X).{\tilde{C}}=0$ and $R({\xi},X).H=0$, where $C,\;{\tilde{M}},\;P,\;{\tilde{C}}$ and H are a quasi-conformal curvature tensor, a M-projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

ON THE CONHARMONIC CURVATURE TENSOR OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD

  • Abood, Habeeb M.;Al-Hussaini, Farah H.
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.269-278
    • /
    • 2020
  • This paper aims to study the geometrical properties of the conharmonic curvature tensor of a locally conformal almost cosymplectic manifold. The necessary and sufficient conditions for the conharmonic curvature tensor to be flat, the locally conformal almost cosymplectic manifold to be normal and an η-Einstein manifold were determined.

A STUDY ON (k, 𝜇)'-ALMOST KENMOTSU MANIFOLDS

  • Li, Jin;Liu, Ximin;Ning, Wenfeng
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.347-354
    • /
    • 2018
  • Let ${\mathcal{C}}$, ${\mathcal{M}}$, ${\mathcal{L}}$ be concircular curvature tensor, M-projective curvature tensor and conharmonic curvature tensor, respectively. We obtain that if a non-Kenmotsu ($k,{\mu}$)'-almost Kenmotsu manifold satisfies ${\mathcal{C}}{\cdot}{\mathcal{S}}=0$, ${\mathcal{R}}{\cdot}{\mathcal{M}}=0$ or ${\mathcal{R}}{\cdot}{\mathcal{L}}=0$, then it is locally isometric to the Riemannian product ${\mathds{H}}^{n+1}(-4){\times}{\mathds{R}}^n$.

TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO GENERALIZED TANAKA-WEBSTER CONNECTION

  • Kazan, Ahmet;Karadag, H.Bayram
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.487-508
    • /
    • 2018
  • In this study, we use the generalized Tanaka-Webster connection on a trans-Sasakian manifold of type (${\alpha},{\beta}$) and obtain the curvature tensors of a trans-Sasakian manifold with respect to this connection. Also, we investigate some special curvature conditions of a trans-Sasakian manifold with respect to generalized Tanaka-Webster connection and finally, give an example for trans-Sasakian manifolds.

Conformally invariant tensors on hermitian manifolds

  • Matsuo, Koji
    • 대한수학회보
    • /
    • 제33권3호
    • /
    • pp.455-463
    • /
    • 1996
  • In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.

  • PDF

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.

BIRECURRENT HYPERSURFACES OF A RIEMANNIAN MANIFOLD WITH CONSTANT CURVATURE

  • Choe, Yeong-Wu
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.159-164
    • /
    • 1989
  • Let M be a hypersurface of dimension n(.geq.2) in an (n+1)-dimensional real space form over bar M(c) with constant curvature c and H the second fundamental tensor of M. M is said to be birecurrent if here exists a covariant tensor field .alpha. of order 2 such that .del.$^{2}$H=H .alpha., where .del. is the connection of M. Also, M is said to be recurrent if there exists a 1-form .betha. such that .del.H=H .betha.. Matsuyama [2] recently proved that a recurrent hypersurface M in a real space form is locally symmetric and a complete irreducible birecurrent hypersurface M in a real space form is recurrent. The main purpose of this paper is to characterize the birecurrent or recurrent hypersurface M of a Riemannian manifold with constant curvature c and to prove that M is classified as a cylinder, $M^{n}$ (c) or ( $c_{1}$)* $M^{n-r}$ ( $c_{2}$) where 1/ $c_{1}$+1/ $c_{2}$=1/c.

  • PDF