
Commun. Korean Math. Soc. 35 (2020), No. 1, pp. 269–278

https://doi.org/10.4134/CKMS.c190003

pISSN: 1225-1763 / eISSN: 2234-3024

ON THE CONHARMONIC CURVATURE TENSOR OF A

LOCALLY CONFORMAL ALMOST COSYMPLECTIC

MANIFOLD

Habeeb M. Abood and Farah H. Al-Hussaini

Abstract. This paper aims to study the geometrical properties of the
conharmonic curvature tensor of a locally conformal almost cosymplectic

manifold. The necessary and sufficient conditions for the conharmonic

curvature tensor to be flat, the locally conformal almost cosymplectic
manifold to be normal and an η-Einstein manifold were determined.

1. Introduction

The conformal transformation on the Riemannian manifold preserves the
angle between two vectors. However, generally, this conformal transformation
does not preserve the harmonicity of functions. A harmonic function is one
with a vanishing Laplacian. Subsequently, Ishi [11] studied a conformal trans-
formation that preserves the harmonicity of a certain function, referred to as
the conharmonic transformation. In particular, he introduced a tensor of rank
four that is invariant under conharmonic transformations for an n-dimensional
Riemannian manifold, also known as conharmonic curvature tensor.

Many researchers studied the aforementioned tensor on certain classes of al-
most Hermatian and almost contact metric manifolds. Ghosh et al. [8] focused
on conharmonically symmetric N(K)-manifolds, particularly to establish if an
n-dimensional N(K)-manifold is conharmonically symmetric, then it is locally
isometric to the product E(n+1)(0) × Sn(4). De et al. [7] studied the proper-
ties of conharmonically semisymmetric and ξ-conharmonically flat generalised
Sasakian space forms. Abood and Abdulameer [1] found the necessary and
sufficient conditions required by the flat conharmonic Vaisman-Gray manifold
to become an Einstein manifold. Further, Ignatochkina and Abood [10] investi-
gated the geometric significance of the vanishing conharmonic curvature tensor
of a Vaisman-Gray manifold and proved that the conharmonic flat Vaisman-
Gray manifolds of dimensions greater than four are locally conformal Kähler

Received January 4, 2019; Revised May 20, 2019; Accepted May 28, 2019.

2010 Mathematics Subject Classification. 53D10, 53D15.
Key words and phrases. Locally conformal almost cosymplectic manifold, η-Einstein man-

ifold, conharmonic curvature tensor.

c©2020 Korean Mathematical Society

269



270 H. M. ABOOD AND F. H. AL-HUSSAINI

manifolds with vanishing scalar curvature tensor. Prakasha and Hadimani [18]
characterised locally Φ-conharmonically symmetric and flat Kenmotsu mani-

folds with respect to a generalised Tanaka-Webster connection ∇̃. Recently,
Abood and Abdulameer [2] employed the G-adjoined structure space to study
the geometry of the Vaisman-Gray manifold of pointwise constant holomorphic
sectional conharmonic tensor.

2. Preliminaries

This section revisits the fundamental concepts in our work, particularly the
structural equations of the locally conformal almost cosymplectic manifold.

Definition 2.1 ([4]). Let M2n+1 be a smooth manifold of odd dimension
≥ 3, η a differential contact 1-form, ξ a characteristic vector field and Φ a
structure endomorphism of the module of the vector fields χ(M). The triplet
of tensors (η, ξ,Φ) will be referred to as an almost contact structure if the
following conditions hold:

(1) η(ξ) = 1;
(2) Φ(ξ) = 0;
(3) η ◦ Φ = 0;
(4) Φ2 = −id+ η ⊗ ξ.

Moreover, if there is a Riemannian metric g = 〈·, ·〉 on M such that 〈ΦX,ΦY 〉 =
〈X,Y 〉−η(X)η(Y ), X,Y ∈ χ(M), then the quadruple (η, ξ,Φ, g) will be known
as an almost contact metric structure. In this case, the manifold M equipped
with the mentioned structure, is called an almost contact metric manifold.

Definition 2.2 ([13]). Let (M,η,Φ, g) be an almost contact metric manifold
(AC-manifold). On the module χ(M), there are two mutually complementary
projections m and `, where m = η ⊗ ξ and ` = −Φ2; thus, χ(M) = L ⊕ ℵ,
where L = Im(Φ) = kerη and ℵ = Im(m) = kerΦ.

Definition 2.3 ([13]). In the module Lc (complexification of L) two mutually
endomorphisms σ and σ̄ are given as σ = 1

2 (id −
√
−1Φ) and σ̄ = − 1

2 (id +√
−1Φ). Moreover, there are two projections given by the forms

Π = σ ◦ ` = −1

2
(Φ2 +

√
−1Φ) and Π̄ = σ̄ ◦ ` =

1

2
(−Φ2 +

√
−1Φ),

where σ ◦ Φ = Φ ◦ σ = iσ and σ̄ ◦ Φ = Φ ◦ σ̄ = −iσ̄. Therefore, if we consider

ImΠ = D
√
−1

Φ and ImΠ̄ = D−
√
−1

Φ , then

χc(M) = D
√
−1

Φ ⊕D−
√
−1

Φ ⊕D0
Φ,

where D
√
−1

Φ , D−
√
−1

Φ and D0
Φ are proper submodules with values

√
−1,−

√
−1

and 0, respectively.
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Definition 2.4 ([16]). The mappings σp : Lp −→ D
√
−1

Φ and σ̄p : Lp −→
D−
√
−1

Φ denote an isomorphism and an anti-isomorphism, respectively. There-

fore, at each point p ∈ M2n+1, there is a frame in T cp (M) of the form (p, ε0, ε1,

. . . , εn, ε1̂, . . . , εn̂), where εa =
√

2σp(ep), εâ =
√

2σ̄(ep), â = a + n, ε0 = ξp,
and ea are the bases of Lp. The frame (p, ε0, ε1, . . . , εn, ε1̂, . . . , εn̂) is known as
an A-frame.

Lemma 2.5 ([14]). The components matrices of the tensors Φp and gp in the
A-frame are given as:

(Φij) =

 0 0 0
0
√
−1In o

0 0 −
√
−1In

 , (gij) =

 1 0 0
0 0 −In
0 In 0

 ,

where In is the identity matrix of order n.

Noteworthy is that the set of such frames defines a G-structure on M with
structure group 1 × U(n), which is represented by the matrices of the form(

1 0 0
0 A 0
0 0 A

)
, where A ∈ U(n). The mentioned structure is known as a G-adjoined

structure space.
Throughout this paper, indices i, j, k, . . . have been assumed to range from

0 to 2n, while indices a, b, c, d, f, g, . . . from 1 to n; moreover, â = a+ n, ˆ̂a = a
and 0̂ = 0 have been set.

Definition 2.6 ([4]). An antisymmetric tensor Ω(X,Y ) = g(X,ΦY ) is referred
to as a fundamental form of the AC-structure.

Lemma 2.7 ([16]). An AC-structure is normal if and only if the following is
present on the G-adjoined structure space:

Φâb,c = Φa
b̂,ĉ

= Φâb,0 = Φa
b̂,0

= Φ0
a,b = Φ0

â,b̂
= Φ0

a,0 = Φ0
â,0 = 0.

Definition 2.8 ([9]). An almost contact metric structure S = (η, ξ,Φ, g) will
be known as an almost cosymplectic structure (AC∫ -structure) if the following
conditions hold.

(1) dη = 0;
(2) dΩ = 0.

Definition 2.9 ([4]). A normal almost cosymplectic structure is said to be
cosymplectic.

Definition 2.10 ([17]). A conformal transformation of an AC-structure S =
(η, ξ,Φ, g) on a manifold indicates the transformation of an S to an AC-
structure S̃ = (η̃, ξ̃, Φ̃, g̃) such that

η̃ = e−ση, ξ̃ = eσξ, Φ̃ = Φ, g̃ = e−2σg,

where σ is the determining function of the conformal transformation. If σ =
const, then the conformal transformation is said to be trivial.
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Definition 2.11 ([17]). An AC-structure S on a manifold M is said to be a
locally conformal almost cosymplectic (LCAC-structure) if the restriction of S
on some neighbourhood U of a point p ∈M admits a conformal transformation
of an almost cosymplectic structure. This transformation referred to as locally
conformal. A manifold M equipped with a LCAC-structure is known as a
LCAC-manifold.

Lemma 2.12 ([15]). In the G-adjoined structure space, a LCAC-manifold is
said to be normal if and only if the following equalities hold:

Babc = Babc = Bab = Bab = σa = σa = 0.

Lemma 2.13 ([12]). In the G-adjoined structure space, the structural equations
of a LCAC-manifold hold the following form:

(1) dωa = −ωab ∧ ωb +Babc ω
c ∧ ωb +Babcωb ∧ ωc +Babω ∧ ωb +Babω ∧ ωb;

(2) dωa = ωba ∧ ωb +Bcabωc ∧ ωb +Babcω
b ∧ ωc +Bbaω ∧ ωb +Babω ∧ ωb;

(3) dω = Cbω ∧ ωb + Cbω ∧ ωb;
(4) dωab = − ωac ∧ ωcb +Aacdb ωc ∧ ωd +Aabcdω

c ∧ ωd +Aacbdω
d ∧ ωc

+Aabc0ω ∧ ωc +Aac0b ω ∧ ωc;
(5) dBabc = −Bdbcωad −Badcωbd −Babdωcd +Babcdωd +Babcd ωd +Babc0ω;
(6) dBabc = Bdbcω

d
a +Badcω

d
b +Babdω

d
c +Babcdω

d +Bdabcωd +Babc0ω;
(7) dBab = −Bdbωad −Badωbd +Dabdωd +Dab

d ω
d +Dab0ω;

(8) dBab = Bdbω
d
a +Badω

d
b +Dabdω

d +Dd
abωd +Dab0ω;

(9) dσb = −σcωbc + σbcωc + σbcω
c + σb0ω;

(10) dσb = −σcωcb + σbcω
c + σcbωc + σb0ω;

(11) dσ0 = σ0bω
b + σb0ωb + σ00ω.

Here Babc, Babc; B
ab, Bab; B

a
b , Bba; Cab, Cab; C

b, Cb; A
acd
b , Abacd; A

ac
bd; Aac0b ,

Abac0; Babci, Babci; D
abi, Dabi and σij are smooth functions in the G-adjoined

structure space.

Definition 2.14 ([6]). The Ricci tensor is a tensor of type (2, 0), which is
defined by

rij = −Rkijk.

Lemma 2.15 ([3]). In the G-adjoined structure space, all essential components
of the Ricci tensor of a LCAC-manifold are given by the following formulae:

(1) rab = 2(−2Ac(ab)c − 4(σ[cδ
h]
[bBc]ha + σ[cδ

h]
[aBc]hb)+σ0Ba[cδ

c
b] + σ0Bb[cδ

c
a]

+ 2σ0Bab −Dab0 − σab − σaσb + 2Bbahσ
h;

(2) râb = − 4(δ
[a
[bσ

c]
c] − σ[cδ

b
h]σ

[hδa]
c −

1

2
σ[aδ

h]
b σh +BhcaBhcb +BbchBcha)

+ (BcbBac −BhbBah) +Acbac − δabσ00 − 2nσ2
0 − σab − σaσb;

(3) ra0 = −Acac0 − σcBac + nσ0σa + 2(σ0[cδ
c
a] +BcbBbca − 2σ[cδ

h]
[cBa]h);

(4) roo = −2n(σ00 + σ2
0)− 2BhcB

ch − 2(σcc + σcσc) + 4σ[cδ
h]
c σh.
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The remaining components can be found by considering the complex conjugation
operator of the above components.

Definition 2.16 ([3]). A LCAC∫ -manifold has a Φ-invariant property if Φ◦r =
r ◦ Φ.

Lemma 2.17 ([3]). A LCAC∫ -manifold has Φ-invariant property if and only
if the following condition holds in the G-adjoined structure space:

râb = rab = râ0 = ra0 = 0.

Definition 2.18 ([5]). A pseudo-Riemannian manifold M is known as an η-
Einstein of type (α, β) if its Ricci tensor satisfies the following condition:

r = αg + βη ⊗ η,(1)

where α and β are suitable smooth functions. If β = 0, then M is referred to
as an Einstein manifold.

This section ends with the discussion of the conharmonic curvature tensor
and its components.

Definition 2.19 ([11]). Let M be an AC-manifold of dimension 2n + 1. A
tensor T of rank (4, 0) is invariant under a conharmonic transformation and
can be defined by the following:

Tijkl = Rijkl −
1

2n− 1
(rjlgik − rjkgil + rikgjl − rilgjk)

is called the conharmonic curvature tensor.

Lemma 2.20 ([3]). In the G-adjoined structure space, the non-zero components
of the conharmonic curvature tensor of a LCAC-manifold are calculated using
the following formulae:

(1) Tabcd = 2(2B[c|ab|d] − 2σ[aBb]cd +Ba[cBd]b);

(2) Tâbcd = 2(Aabcd + 4σ[aδ
h]
[cBd]hb − σ0Bb[dδ

a
c])−

1
2n−1 (rbdδ

a
c − rbcδad);

(3) Tâbcd̂ = Aadbc + 4σ[aδh]
c σ[hδ

d
b] − 4BdahBchb +BadBbc − δac δdbσ2

0

− 1
2n−1 (rdb δ

a
c + rac δ

d
b );

(4) Tâb̂cd = 2(2δ
[b
[cσ

a]
d] + 2BhabBhdc − δa[cδ

b
d]σ

2
0)− 4

2n−1 (r
[a
[c δ

b]
d]);

(5) Tâ0cd = 2(σ0[cδ
a
d] +BabBbcd − 2σ[aδ

h]
[cBd]h)− 1

2n−1 (r0dδ
a
c − r0cδ

a
d);

(6) Tâbĉ0 = Aac0b + σbB
ac − δcbσ0σ

a + 1
2n−1 (ra0δ

c
b);

(7) Tabc0 = 2Bcab0 + 2Bcabσ0;

(8) Tâ0b0 = − δabσ00 − δabσ2
0 −BcbBac − σab − σaσb + 2σ[aδ

c]
b σc

− 1
2n−1 (r00δ

a
b + rab );

(9) Tâ0b̂0 = 2σ0B
ab −Dab0 − σab − σaσb + 2Bbacσc − 1

2n−1 (râb̂).

The remaining components are conjugates to those given above or can be ob-
tained using the symmetric properties for T or are identically equal to zero.
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3. Geometry of conharmonic curvature tensor of a LCAC-manifold

This section concerns the study of the flat conharmonic curvature tensor of
a LCAC-manifold. In particular, it deals with the necessary conditions for the
locally conformal almost cosymplectic manifold to be an η-Einstein manifold.

Definition 3.1. A LCAC-manifold is known to be conharmonically flat if its
conharmonic curvature tensor vanishes.

Theorem 3.2. Suppose M is a LCAC-manifold of dimension > 3. Then the
necessary and sufficient conditions for the conharmonic tensor to be flat are
Aadbc = Babc = Bab = σa = 0 and σ00 = −(n+ 1

2 )σ2
0.

Proof. Let M be a conharmonically flat LCAC-manifold. Considering Lemma
2.20(3), we have

Aadbc + 4σ[aδh]
c σ[hδ

d
b] − 4BdahBchb +BadBbc(2)

− δac δdbσ2
0 −

1

2n− 1
(rbdδ

c
a + rcaδ

b
d) = 0.

Symmetrising and then antisymmetrising (2) using indices (c, b), we get

4σ[aδh]
c σ[hδ

d
b] − 4BdahBchb = 0.(3)

Symmetrising (3) by using indices (d, a), we have

BdahBchb = 0.(4)

By contracting (4) using indices (a, b) and then (d, c), the following is obtained

BdahBdha = 0⇔
∑
d,h,a

=|Bdha|2 = 0⇔ Bdha = 0.(5)

Consequently, we get

4σ[aδh]
c σ[hδ

d
b] = 0.(6)

Contracting (6) with indices (h, c) and (d, b), we obtain

(n2 − 2n+ 1)(σaσh) = 0.(7)

Once again, contracting (7) by using indices (a, h), we get

σaσa = 0⇔
∑
a

|σa|2 = 0⇔ σa = 0.(8)

Moreover, from Lemma 2.20(1), we have

2(2B[c|ab|d]− 2σ[aBb]cdBa[cBd]b) = 0.(9)

Symmetrising and then antisymmetrising (9) using indices (a, b), we deduce

BacBdb −BadBcb = 0.(10)

Antisymmetrising (10) by using indices (a, d), it follows that

BacBdb = 0.(11)
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Contracting (11) with indices (a, d) and (c, b), we get B2
ac = 0, then

Bac = 0.(12)

Now, regarding (1) of Lemma 2.20 and taking into account the relations (5),
(8) and (11), we obtain

−δabcdσ2
0 −

1

2n− 1
(rac δ

d
b − radδbc − rbcδad + rbdδ

a
c ) = 0,

where δabcd = δac δ
b
d − δadδbc.

By virtue of Lemma 2.15, we have

−δabcdσ2
0 −

1

2n− 1
[−2δabcd(σ00 + 2nσ2

0) + δbdA
hc
ah − δbcAhdah − δadAhcbh + δacA

hd
bh ] = 0,

1

2n− 1
[2δabcd((n+

1

2
)σ2

0 + σ00)− δbdAhcah + δbcA
hd
ah + δadA

hc
bh − δacAhdbh ] = 0.(13)

Once again, using the relations (5), (8) and (11), then equation (2) reduces to

Aadbc − δac δdbσ2
0 −

1

2n− 1
(rbdδ

c
a + rcaδ

b
d) = 0.

According to Lemma 2.15, we have

Aadbc − δac δdbσ2
0 −

1

2n− 1
[−2δac δ

d
b (σ00 + 2nσ2

0) + δacA
hb
dh + δdbA

hc
ah] = 0,

1

2n− 1
[2δac δ

d
b ((n+

1

2
)σ2

0 + σ00) + (2n− 1)Aadbc − δacAhbdh − δdbAhcah] = 0.(14)

Moreover, from Lemma 2.20(8), we have

−δabσ00 − δabσ2
0 −

1

2n− 1
(r00δ

a
b + rab ) = 0.

By substitution the component of the Ricci tensor, we get

−δabσ00 − δabσ2
0 −

1

2n− 1
[−2δab (2nσ2

0 + (n+
1

2
)σ00) +Ahbah] = 0,

1

2n− 1
[2δab ((n+

1

2
)σ2

0 + σ00)−Ahbah] = 0.(15)

Using the equations (13), (14) and (15), it follows that Aadbc = 0 and σ00 = −(n+
1
2 )σ2

0 . Conversely, from Lemma 2.13, and according to the linear independence
of the basic forms, we can get the requirement directly. �

As a consequence of Theorem 3.1, we can directly obtain the next result.

Corollary 3.3. Suppose M is a conharmonically flat LCAC-manifold. Then
M is a conharmonically flat normal LCAC-manifold.

The next theorem gives the necessary condition for a LCAC-manifold to be
an η-Einstein manifold.
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Theorem 3.4. Let M be a LCAC-manifold of dimension > 3 and conhar-
monically flat. Then M is an η-Einstein manifold of type (α, β), where α =

− 2n−1
2 σ2

0 and β = (n+2)(2n−1)
2n .

Proof. Suppose M is a conharmonically flat LCAC-manifold.
According to Definition 3.1 and Lemma 2.7(3), we have

Aadbc + 4σ[aδh]
c σ[hδ

d
b] − 4BdahBchb +BadBbc

− δac δdbσ2
0 −

1

2n− 1
(rbdδ

c
a + rcaδ

b
d) = 0.

Taking into account Theorem 3.1, we have

−δac δdbσ2
0 −

1

2n− 1
(rdb δ

a
c + rac δ

d
b ) = 0.(16)

Contracting (16) with indices (a, b), we obtain

−δcdσ2
0 =

2rcd
2n− 1

,(17)

rcd = αδcd.(18)

Using the Lemma 2.20(8), we immediately get

−δabσ00 − δabσ2
0 −BcbBac − σab − σaσb + 2σ[aδ

c]
b σc −

1

2n− 1
(r00δ

a
b + rab ) = 0.

According to Theorem 3.1 and the equation (3.18), we have

(n− 1

2
)δabσ

2
0 −

1

2n− 1
(r00δ

a
b −

2n− 1

2
σ2

0δ
a
b ) = 0.(19)

Hence,

r00 =
2n− 1

n
σ2

0 ,

where β = (n+2)(2n−1)
2n σ2

0 .
Therefore, M is an η-Einstein manifold. �

Theorem 3.5. If M is a LCAC-manifold of dimM < 5 with Φ-invariance
property and conharmonically flat, then M is an η-Einstein manifold of type
(α, β), where α = σ2

0 + σ00 + σ1
1 + σ1σ1 and β = −3σ2

0 − 3σ00 − 3(σ1
1 + σ1σ1).

Proof. Suppose M is a conharmonically flat LCAC-manifold.
According to Definition 3.1 and Lemma 2.20(3), we have

A11
11 − 4B111B111 +B11B11 − σ2

0 − 2r1
1 = 0.

Making use of Theorem 3.1, we get

A11
11 − σ2

0 − 2r1
1 = 0.

By the virtue of Lemma 2.15, we obtain

A11
11 = 3σ2

0 + 2σ00 + 2(σ1
1 + σ1σ1).(20)
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Using relation (20), we have r1
1 = αδ1

1 , where α = σ2
0 + σ00 + σ1

1 + σ1σ1.
Moreover, r00 = α + β, where β = −3σ2

0 − 3σ00 − 3(σ1
1 + σ1σ1). Using the Φ-

invariance property, we obtain M as an η-Einstein manifold of type (α, β). �
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