DOI QR코드

DOI QR Code

A STUDY ON (k, 𝜇)'-ALMOST KENMOTSU MANIFOLDS

  • Li, Jin (School of Mathematical Sciences, Dalian University of Technology) ;
  • Liu, Ximin (School of Mathematical Sciences, Dalian University of Technology) ;
  • Ning, Wenfeng (School of Mathematical Sciences, Dalian University of Technology)
  • Received : 2018.02.04
  • Accepted : 2018.03.20
  • Published : 2018.06.25

Abstract

Let ${\mathcal{C}}$, ${\mathcal{M}}$, ${\mathcal{L}}$ be concircular curvature tensor, M-projective curvature tensor and conharmonic curvature tensor, respectively. We obtain that if a non-Kenmotsu ($k,{\mu}$)'-almost Kenmotsu manifold satisfies ${\mathcal{C}}{\cdot}{\mathcal{S}}=0$, ${\mathcal{R}}{\cdot}{\mathcal{M}}=0$ or ${\mathcal{R}}{\cdot}{\mathcal{L}}=0$, then it is locally isometric to the Riemannian product ${\mathds{H}}^{n+1}(-4){\times}{\mathds{R}}^n$.

Keywords

References

  1. A. M. Pastore and V. Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4(2) (2011), 168-183.
  2. D. G. Prakasha and K. Mirji, On the M{Projective curvature tensor of a (k, ${\mu}$)-contact metric manifold, Facta Univ. Ser. Math. Inform. 32(1) (2017), 117-128.
  3. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93(1) (2009), 46-61. https://doi.org/10.1007/s00022-009-1974-2
  4. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1) (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  5. U. C. De and K. Mandal, On ${\phi}$-Ricci recurrent almost Kenmotsu manifolds with nullity distributions, Int. Electron. J. Geom. 9(2) (2016), 70-79.
  6. U. C. De, J. B. Jun and K. Mandal, On almost Kenmotsu manifolds with nullity distributions, Tamkang J. Math. 48(3) (2017), 251-262. https://doi.org/10.5556/j.tkjm.48.2017.2272
  7. U. C. De and K. Mandal, On a type of almost Kenmotsu manifolds with nullity distributions, Arab J. Math. Sci. 23(2) (2017), 109-123. https://doi.org/10.1016/j.ajmsc.2016.04.001
  8. Y. Wang, A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors, Open Math. 14(1) (2016), 977-985. https://doi.org/10.1515/math-2016-0088
  9. Y. Wang and W. Wang, Some results on (k, ${\mu}$)'-almost Kenmotsu manifolds, Quaestiones Math. DOI: 10.2989/16073606.2017.1391347.
  10. Y. Wang and X. Liu, On almost Kenmotsu manifolds satisfying some nullity distributions, Proc. Natl. Acad. Sci., India Sec. A: Phys. Sci. 86(3) (2016), 347-353. https://doi.org/10.1007/s40010-016-0274-0