• Title/Summary/Keyword: greenhouse soil

Search Result 895, Processing Time 0.023 seconds

Effect of Soil Water Content on the Yield and Quality of Plastic Greenhouse Oriental Melon during Low Temperature Season (토양수분조건이 시설재배 참외의 수량과 품질에 미치는 영향)

  • 박동금;권준국;이재한;엄영철;김회태;최영하
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.151-155
    • /
    • 2000
  • In order to investigate the optimum irrigation point by soil water tension in oriental melon grown in plastic greenhouse during low temperature season, irrigation points from 10 days before fruiting to 10 days before harvesting were examined with 10, 20, 30 and 50 kPa, respectively. Total amount of water applied was 92.5mm at 10kPa but not irrigated at 50kPa due to the unreach of irrigation point. Fruit weight increased with increased soil water content; it was 456g at 10kPa but 324g at 50kPa. While marketable yield of fruit was lowest at 10 kPa due to increased fermented fruit. Sugar content in fruit was highest at 30 or 50 kPa but lowest at 10kPa. As a result, for higher sugar content and marketable yield, the recommended irrigation point is 30kPa of soil water tension.

  • PDF

Effect of Density of Helicotylenchus dihystera on Growth of Solanum lycopersicum (나선선충 접종 밀도가 토마토 생육에 미치는 영향)

  • Kim, Donggeun;Ryu, Younghyun;Lee, Younsu;Choi, Insoo;Hu, Changsuk
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.107-111
    • /
    • 2014
  • A greenhouse experiment was conducted to examine the effect of initial population density (Pi) of Helicotylenchus dihystera on six commercial tomato cultivars. Two-week-old tomato seedlings of six commercial cultivars were transplanted in d-10-cm clay pot and was inoculated with to give 0, 0.02, 0.2, and 2 nematodes/g soil. Plants were grown in a greenhouse for 60 days. Root and plant weights were unaffected but plant height declined only at inoculum level of 2 nematodes/g soil. At the highest initial population density (2 nematodes/g soil), plant height of tomato cv. Poseidon was reduced by 24%. Tomato cv. Hoyong produced the most nematodes with 7.0 nematodes/g soil and the least was tomato cv. Miniheuksu with 2.2 nematodes/g soil.

The Influence of Composted Animal Manure Application on Nitrous Oxide Emission from Upland Soil

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.530-537
    • /
    • 2017
  • Composted animal manure added for improving soil quality and enhancing crop productivity can lead to greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. In addition, the amount of $N_2O$ emission from composted manure amended soils can vary greatly with composted manure type or different soil type. Therefore, the influence of cattle composted manure on $N_2O$ emissions was evaluated during growth of sweet potato (Ipomoea batatas). The treatments included control, conventional fertilization (CF), and CF + cattle composted manure (CCM) $10Mg\;ha^{-1}$ were applied in the spring. $N_2O$ emissions were significantly affected by composted manure and chemical fertilizer and the CCM had greater N2O emissions compared with other treatments. The majority of $N_2O$ emissions occurred shortly after composted manure and chemical fertilizer application compared with the rest of the growing seasons for all treatments. Also, $N_2O$ flux was associated with water-filled pore space (WFPS) at all treatments. On average of $N_2O$ emission accumulation, the CCM was 1.5 times greater than control treatment while there was no difference between CF and control.

Evaluation of Residues of Fungicide Azoxystrobin in Radish based on Plant Back Interval Experiment (식물후방식재기간(PBI) 시험에 기반한 살균제 Azoxystrobin의 알타리무 중 잔류량 평가)

  • Yoon, Ji Hyun;Lim, Da Jung;Kim, Seon Wook;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • BACKGROUND: The pesticide residue in rotational crop is one of the main concerns to agricultural products because it has the potentiality of violating positive list system (PLS). Thus, the crops used for the rotational cultivation should be considered the pesticide residue patterns to meet the PLS guideline. In this study, we evaluated the residue patterns of fungicide azoxystrobin in radish based on plant back interval (PBI) experiment. METHODS AND RESULTS: Azoxystrobin was treated onto greenhouse soil at 217 g a.i./10a in two different regions. Radishes were sown onto the soil 30 and 60 days after azoxystrobin treatment. The soil and plant samples were subjected to a modified QuEChERS method and LC/MS/MS analyses to determine the residues of azoxystrobin. The methods were validated to meet the guidelines of the pesticide residue analysis recommended by the Rural Development Administration, Republic of Korea. Azoxystrobin was dissipated significantly in soil during the experimental period and found as a level less than 0.01 mg/kg in radish 30 and 60 days after treatment. Azoxystrobin residues in radish samples were lower than the maximum residue limit (MRL) for root vegetables. CONCLUSION(S): This study suggests 30 days as a PBI for rotational cultivation of radish in greenhouse soil that had been treated with azoxystrobin at a level of 217 g a.i./10a.

Analysis of Methane from Screened Soil of Closed Landfill and Application of Landfarming for the Reduction of the Methane (사용종료 매립지 선별토양의 메탄 발생 분석 및 토양경작기술 적용 효과 연구)

  • Kim, Kyung;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.40-45
    • /
    • 2010
  • In this study, methane production by reuse of screened soil of landfill was estimated and the effect of application of landfarming for the reduction of methane was investigated. The study soil sampled from S closed landfill contains VS 9.8~12.8% and its BOD/COD is 0.31~0.33 which is more than three times over 0.1, the BOD/COD stabilization criteria of Ministry of Environment. The effective remediation technology for the reduction of organics of soil, landfarming was applied to the screened soil for 60 days. VS and TPH removal showed 5.2~8.3% and 67~74% respectively, and the reduction of VS until 30 day charged 70% of the total reduction. BMP test showed 27.77~30.46 mL $CH_4$/g VS and total methane production from total screened soil for remediation is expected about 260.4 $CH_4$ ton. Expected amount of methane production of the screened soil by landfarming application is 12.9 $CH_4$ ton, which shows 95% gas reduction effect and landfarming is effective for the reduction of methane production from screened soil of landfill.

Effect of Irrigation Automation Using Stem Diameter Variation as an Indicator of Irrigation Timing in Greenhouse Tomato (온실재배 토마토에서 관개시기 진단지표로 경직경 변화를 이용한 관개 자동화 효과)

  • 이변우;신재훈
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.232-241
    • /
    • 1999
  • The automatic irrigation system using the stem diameter monitoring and the transpiration model for the determination, respectively, of irrigation timing and amount was designed and evaluated for its applicability in pot and field culture of greenhouse tomato. In the pot culture condition, the yield and quality of greenhouse tomato were improved when irrigation was practiced based on the stem diameter monitoring and the transpiration model as compared to the irrigation practice based on soil moisture monitoring. However, the effects were not significant in the field culture condition.

  • PDF

Uncertainty-based Decision on Mitigation of Nitrous Oxide Emissions in Upland Soil (불확도 기반 밭토양 아산화질소 배출 저감 여부 판정)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.307-316
    • /
    • 2019
  • In the agricultural sector, greenhouse gas emissions vary depending on the interaction of all ecosystem changes such as soil environment, weather environment, crop growth, and anthropogenic farming activities. Agricultural sector greenhouse gas emissions resulting from many of these interactions are highly variable. Uncertainty-based evaluation that defines the interval with confidence level of greenhouse gas emission and absorption is necessary to take account of the variance characteristics of individual emissions, but research on uncertainty evaluation method is insufficient. This study aims to decide on the effect of reducing N2O emissions from upland soils using an uncertainty-based approach. An uncertainty-based approach confirmed whether there was a difference between confidence intervals in the 5 different fertilizer treatment groups to reduce greenhouse gas emissions. Unlike the statistically significant test with three repetition averages, the uncertainty-based approach method estimated in this study is able to estimate the confidence interval considering the distribution characteristics of the emissions, such as the dispersion characteristics of individual emissions. Therefore, it is considered that the reliability of emissions can be improved by statistically testing the variance characteristics of emissions such as the uncertainty-based approach. It is hoped that the direction of the uncertainty-based approach for the effect of reducing greenhouse gas emissions in agriculture will be helpful in the future development of agricultural greenhouse gas emission reduction technology, adaptation to climate change, and further development of sustainable eco-social system.

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Assessment of Greenhouse gases Emission of Agronomic Sector between 1996 and 2006 IPCC Guidelines (1996년과 2006년 IPCC 가이드라인별 경종부문 온실가스 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1214-1219
    • /
    • 2011
  • This study was conducted to compare of greenhouse gas emissions between 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) guidelines change. Greenhouse gas emissions were calculated separately by rice cultivation, agricultural soils and field burning of agricultural residues from 2000 to 2008 according to 1996 and 2006 IPCC guidelines. To calculate greenhouse gas emissions, emission factor and activity data were used IPCC default value and the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry, and Fisheries). The greenhouse emissions by 1996 IPCC guidelines were highest in rice cultivation as 4,008 $CO_2$-eq Gg of 2000 and 3,558 $CO_2$-eq Gg of 2008. The emissions by N-fixing crops, crop residues returned soils and field burning did not much affect the total emissions. $CO_2$ emissions by urea and lime were calculated by adding in 2006 IPCC guidelines and its emissions were 157 and 82 $CO_2$-eq Gg in 2008 respectively. The emissions by N-fixing crops, crop residues returned to soils and field burning, in common with 1996 IPCC guidelines, did not have a significant impact on total emissions. The total emissions in agronomic sector was decreased continuously from 2000 to 2008 and annual emissions by 2006 IPCC guidelines were approximately 26-29% less than the 1996 IPCC guidelines.

Biological Control of Thrips Using a Self-produced Predatory Mite Stratiolaelaps scimitus (Acari: Laelapidae) in the Greenhouse Chrysanthemum (시설재배지 국화에서 자가생산한 뿌리이리응애 (응애아강: 가시진드기과)를 활용한 총채벌레의 생물적 방제)

  • Jung, Duck-Oung;Hwang, Hwal-Su;Kim, San-Young;Lee, Kyeong-Yeoll
    • Korean journal of applied entomology
    • /
    • v.58 no.3
    • /
    • pp.233-238
    • /
    • 2019
  • For greenhouse crops, thrips is one of the major insect pests, but its control is difficult owing to short generation time, rapid escaping behavior, and development of pesticide resistance. Stratiolaelaps scimitus (Womersley) is a soil-dwelling predatory mite attacking various soil invertebrate species, including thrips. Using the method by growers' self-production, we mass-reared S. scimitus colony and investigated thrips control in the greenhouse chrysanthemum. The initial density of thrips was six individuals/flower. The treatment with one S. scimitus box in the greenhouse was estimated to be $1,000individuals/m^2$. From August to September 2018, the greenhouse was released with a total of 10 boxes of S. scimitus. The density of thrips in the untreated and the treated cultivar was $53.7{\pm}7.0$ and $13.5{\pm}1.7$ on the late September, respectively, which indicated a reduction of 74.9% in the treated cultivar. Our results suggest that S. scimitus was highly effective for the control of thrips in the greenhouse chrysanthemum although temperature is very high during the summer season.