Browse > Article
http://dx.doi.org/10.5656/KSAE.2019.08.0.037

Biological Control of Thrips Using a Self-produced Predatory Mite Stratiolaelaps scimitus (Acari: Laelapidae) in the Greenhouse Chrysanthemum  

Jung, Duck-Oung (Sustainable Agriculture Research Center, Kyungpook National University)
Hwang, Hwal-Su (Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Kim, San-Young (Gumi Floriculture Research Institute, Gyeongsangbukdo Agricultural Research and Extension Services)
Lee, Kyeong-Yeoll (Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Korean journal of applied entomology / v.58, no.3, 2019 , pp. 233-238 More about this Journal
Abstract
For greenhouse crops, thrips is one of the major insect pests, but its control is difficult owing to short generation time, rapid escaping behavior, and development of pesticide resistance. Stratiolaelaps scimitus (Womersley) is a soil-dwelling predatory mite attacking various soil invertebrate species, including thrips. Using the method by growers' self-production, we mass-reared S. scimitus colony and investigated thrips control in the greenhouse chrysanthemum. The initial density of thrips was six individuals/flower. The treatment with one S. scimitus box in the greenhouse was estimated to be $1,000individuals/m^2$. From August to September 2018, the greenhouse was released with a total of 10 boxes of S. scimitus. The density of thrips in the untreated and the treated cultivar was $53.7{\pm}7.0$ and $13.5{\pm}1.7$ on the late September, respectively, which indicated a reduction of 74.9% in the treated cultivar. Our results suggest that S. scimitus was highly effective for the control of thrips in the greenhouse chrysanthemum although temperature is very high during the summer season.
Keywords
Thrips; Natural enemies; Predatory mites; Mass production; Sustainable agriculture;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bennison, J., Maulden, K., Maher, H., 2002. Choice of predatory mites for biological control of ground-dwelling stages of western flower thrips within a 'push-pull' strategy on pot chrysanthemum. IOBC/WPRS Bull. 25, 9-12.
2 Berndt, O., Meyhofer, R., Poehling, H.M., 2004. The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biol. Control 30, 17-24.   DOI
3 Chambers, R.J., Wright, E.M., Lind, R.J., 1993. Biological control of glasshouse sciarid larvae (Bradysia spp.) with the predatory mite, Hypoaspis miles on Cyclamen and Poinsettia. Biocontrol Sci. Technol. 3, 285-293.   DOI
4 Chown, S.L., Terblanche, J.S., 2006. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50-152.   DOI
5 Colinet, H., Sinclair, B.J., Vernon, P., Renault, D., 2015. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123-140.   DOI
6 Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotech. 3, 294-299.
7 Gao, Y., Lei, Z., Reitz, S.R., 2012. Western flower thrips resistance to insecticides: detection, mechanisms, and management strategies. Pest Manag. Sci. 68, 1111-1121.   DOI
8 Hoddle, M.S., Mound, L.A., Paris, D.L., 2008. Thrips of California. CBIT Publishing, Queensland, Australia. (http://keys.lucidcentral.org/keys/v3/thrips_of_california/Thrips_of_California. html).
9 Hyun, J.W., Hwang, R.Y., Lee, K.S., Song, J.H., Kwon, H.M., Hyun, D.H., Kim, K.S., 2012. Seasonal occurrence of yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), in citrus orchards and its damage symptoms on citrus fruits (in Korean with English abstract). Korean J. Appl. Entomol. 51, 1-7.   DOI
10 Jung, D.O., Hwang, H.S., Kim, J.W., Lee, K.Y., 2018. Development of the mass-rearing technique for a predatory mite Stratiolaelaps scimitus (Acari: Laelapidae) using the double box system. Korean J. Appl. Entomol. 57, 253-260.   DOI
11 Kim, H.Y., Kim, J.H., Kang, S.H., Lee, Y.H., Choi, M.Y., 2009. Biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on cucumber, using Amblyseius swirskii (Acari: Phytoseiidae). Korean. J. Appl. Entomol. 48, 355-359.   DOI
12 Kim, J.H., Byun, Y.U., Kim, Y.H., Park, C.G., 2006. Biological control of thrips with Orius strigicollis (Poppius) (Hemiptera: Anthocoridae) and Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) on greenhouse green pepper, sweet pepper and cucumber. Korean J. Appl. Entomol. 45, 1-7.
13 Li, H.B., Shi, L., Lu, M.X., Wang, J.J., Du, Y.Z., 2011. Thermal tolerance of Frankliniella occidentalis: effects of temperature, exposure time, and gender. J. Therm. Biol. 36, 437-442.   DOI
14 Messelink, G.J., Holstein-Saj, R.V., 2008. Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). IOBC/WPRS Bull. 32, 135-138.
15 Messelink, G.J., Steenpal, S.E.F.V., Ramakers, P.M.J., 2006. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biol. Control 51, 753-768.
16 Morse, J.G., Hoddle, M.S., 2006. Invasion biology of thrips. Ann. Rev. Entomol. 51, 67-89.   DOI
17 Shibao, M., Inoue, Y., Morikawa, S., Tanaka, H., 2010. Lethal high temperatures of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), and control of the thrips with solar radiation by covering the ground with film. Jap. J. Appl. Entomol. Zool. 54, 71-76.   DOI
18 Mouden, S., Sarmiento, K.F., Klinkhamer, P.G., Leiss, K.A., 2017. Integrated pest management in western flower thrips: past, present and future. Pest Manag. Sci. 73, 813-822.   DOI
19 Reitz, S.R., Gao, Y., Kirk, W., Hoddle, M.S., Leiss, K.A., Funderburk, J., 2019. Invasion biology, ecology, and management of western flower thrips. Ann. Rev. Entomol. In Press.
20 Riley, D.G., Joseph, S.V., Srinivasan, R., Diffie, S., 2011. Thrips vectors of Tospoviruses. J. Int. Pest Manag. 2, 1-10.
21 Thoeye, C., van der Linden, A., Bernaerts, F., Blust, R., Decleir, W., 1987. The effect of diurnal temperature cycles on survival of Artemia from different geographical origins, In: Sorgeloos, P., Bengston, D.A., Decleir, W., Jaspers, E. (Eds.), Artemia Research and its Applications, Vol. 1: Morphology, Genetics, Strain Characterization, Toxicology. Wetteren, Belg. Universa, pp. 233-239.
22 Thompson, R.M., Beardall, J., Beringer, J., Grace, M., Sardina, P., 2013. Means and extremes: building variability into communitylevel climate change experiments. Ecol. Lett. 16, 799-806.   DOI
23 Walter, D.E., Campbell, N.J.H., 2003. Exotic vs endemic biocontrol agents: Would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), please stand up?. Biol. Control 26, 253-269.   DOI
24 Wang, Z.Q., Wang, B.M., Hu, X.Y., Lan, Q.X., Luo, J., Fan, Q.H., 2009. Effect of temperature and relative humidity on the development of Stratiolaelaps scimitus. Acta Agric. Univ. Jiangxiensis 31, 1039-1043.   DOI
25 Ydergaard, S., Enkegaard, A., Brodsgaard, H.F., 1997. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 85, 177-187.   DOI
26 Whitefield, A.E., Ullman, D.E., German, T.L., 2005. Tospovirusthrips interactions. Ann. Rev. Phytopathol. 43, 459-489.   DOI
27 Yano, E., 2004. Recent development of biological control and IPM in greenhouses in Japan. J. Asia-Pac. Entomol. 7, 5-11.   DOI