• Title/Summary/Keyword: green reduction

Search Result 1,169, Processing Time 0.026 seconds

The Analysis on the Evaluation Items of Korea Green Building Certification Criteria by the Case Studies of Collective Housing (국내 공동주택 부문의 친환경건축 인증 평가 항목 및 사례 분석)

  • Kim, Chang-Sung
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Many countries have made their best to protect the earth from global warming and to find solutions for the reduction of carbon dioxide emittion and energy consumption. Especially, buildings have emitted over 40% of carbon dioxide against whole quantities emitted to the earth. Therefore, the reduction of carbon dioxide emitted from buildings require to save the earth environment. Energy consumption of buildings in Korea has reached 24% of total energy quantities, and energy consumption of collective housing has been continuously increasing. So, Korea government has also executed the Green Building Certification Criteria(GBCC). The GBCC evaluates the 8 types of buildings - collective housing, office, school, etc - to certificate the green building. In this paper, the evaluation items of collective housing in GBCC were reviewed to be used as the reference data for future revisions by the case studies. According to the results of this study, current version of GBCC requires additional revisions about the evaluations of energy consumption monitoring, commissioning and existing building.

Using a Micro-flown device to measure acoustical properties of green roof systems (Micro-flown 장비를 이용한 옥상녹화재료 음향 물성치 실험)

  • Yang, Hong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.870-873
    • /
    • 2014
  • Green roof systems has widely been used on rooftop of buildings by considering environmental benefits in aspects of bio-diversity, storm-water runoff as well as noise reduction. To predict noise reduction effect by green roof systems, it is necessary to measure in-situ acoustical properties of the components by devices enabling in-situ measurements. In this study, Micro-flown, which is the state of the arts device to measure in-situ normalized impedance and absorption coefficient has been used to measure acoustical properties of green roof materials according to different water saturation condition in the materials.

  • PDF

A Study on LED with Small Form Factor Suitable for Green A of Night Vision Imaging System (야간 투시 영상시스템의 Green A에 적합한 작은 형태인자를 가진 LED에 관한 연구)

  • Kim, Tae Hoon;Yu, Chang Han;Yoon, Hyeon Ju;Kim, Min Pyung;Yoon, Ho Shin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.62-67
    • /
    • 2021
  • In this study, we have successfully developed an unique NVIS Green A compatible LED by combining two technologies. One is white LED made with a black EMC (epoxy molding compound) lead frame. The other is NVIS Green A filter that shields the near infrared region made in the film method. The form factor of the developed NVIS Green A compatible LED was 2.0 × 2.0 × 0.95 mm. And it is possible to satisfy NVIS radiance and color limit specified in MIL-STD-3009 by controlling the concentration of Green A dye and the thickness of the NVIS filter as well as adjusting of color temperature of the white LED. From these results, we are expected that the developed NVIS Green A suitable LED is a promising solution for the weight reduction and the cost reduction of avionic applications.

Study on Improvement Measures of Green Standard for Energy and Environmental Design for Expansion of Applying Green Roof - Focused on LEED in the USA and BREEAM in the UK - (옥상녹화 적용확대를 위한 녹색건축인증제도 개선방안 연구 - 미국 LEED 및 영국 BREEAM의 비교·분석을 중심으로 -)

  • Kim, Ji-Hyeon;Kwon, Hyuck-Sam;Kim, Jung-Gon;Lee, Bum-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2018
  • Green roof in Korea has been recognized as part of landscape area and local governments enacted municipal ordinance for supporting green roof thereby assisting part of expenses spent for green roof within a range of budget for buildings which are eligible for the green roof support of existing buildings. However, it is necessary to enforce a regulation of mandatory green roof for new buildings in order to expand green roof application and provide a variety of assistances such as subsidy payment, tax relief, and mitigation of floor area ratio-related regulation as done in other advanced nations. In particular, LEED(Leadership in Environmental and Energy Design) in the USA applies additional point directly for green roof in terms of the reduction in heat island effects. For example, the following items are beneficial to have additional points: habitat preservation or restoration, external space, rainwater management, reduction in outdoor water usage, minimum energy performance, and optimum energy performance. In addition, the BREEAM(Building Research Establishment Environmental Assessment Method) in the UK specifies green roof as one of assessment items to be complied in terms of diversity of species. As such, LEED and BREEAM reflect direct and indirect effects of green roof on assessment criteria, which suggest a direction to green building certification criteria in Korea where only additional points are given for green roof according to soil depth.

Removal and Inactivation of Viruses during Manufacture of a High Purity Antihemophilic Factor VII Concentration from Human Plasma

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae;Woo, Hang-Sang;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.497-503
    • /
    • 2001
  • The purpose of this study was to examine the efficacy and mechanism of the cryo-precipitation, solvent/detergent (S/D) treatment, monoclonal anti-FVIIIc antibody (mAb) column chromatography, Q-Sepharose column chromatography, and lyophilization involved in the manufacture of antithemophilic factor VII(GreenMono) from human plasma, in the removal and/or inactivation of blood-borne viruses. A variety of experimental model viruses for human pathogenic viruses, including the bovine viral diarrhoea virus (BVDV), bovine herpes virus (BHV), murine encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV), were all selected for this study. BHV and EMCV were effectively partitioned from a factor VII during the cryo-precipitation with a log reduction factor of 2.83 and 3.24, respectively. S/D treatment using the organic solvent, tri(n-butyl) phosphate (TNBP), and the detergent, Triton X-100, was a robust and effective step in inactivating enveloped viruses. The titers of BHV and BVDV were reduced from the initial titer of 8.85 and $7.89{log_10} {TCID_50}$, respectively, reaching undetectable levels within 1 min of the S/D treatment. The mAb chromatography was the most effective step for removing nonenveloped viruses, EMCV and PPV, with the log reduction factors of 4.86 and 3.72, respectively. Q-Sepharose chromatography showed a significant efficacy for partitioning BHV, BVDV, EMCV, and PPV with the log reduction the log reduction factors of 2.32, 2.49, 2.60, and 1.33 respectively. Lyophilization was an effective step in inactivating g nonenveloped viruses rather than enveloped viruses, where the log reduction factors of BHV, BVDV, DMCV, and PPV were 1.41, 1.79, 4.76, and 2.05, respectively. The cumulative log reduction factors of BHV, BVDV, EMCV, and PPV were ${\geqq}$11.12, ${\geqq}$7.88, 15.46, and 7.10, respectively. These results indicate that the production process for GreenMono has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

  • PDF

A facile green reduction of graphene oxide using Annona squamosa leaf extract

  • Chandu, Basavaiah;Mosali, Venkata Sai Sriram;Mullamuri, Bhanu;Bollikolla, Hari Babu
    • Carbon letters
    • /
    • v.21
    • /
    • pp.74-80
    • /
    • 2017
  • A highly facile and eco-friendly green synthesis of Annona squamosa (custard apple) leaf extract reduced graphene oxide (CRG) nanosheets was achieved by the reduction of graphene oxide (GO). The as-prepared CRG was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopic techniques. Removal of oxygen containing moieties from the GO was confirmed by UV-Vis, FT-IR and XPS spectroscopic data. The XRD and Raman data further confirmed the formation of the CRG. TEM images showed the sheet structure of the synthesized CRG. These results show that the phytochemicals present in custard apple leaf extract act as excellent reducing agents. The CRG showed good dispersion in water.

Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds

  • Duan, Zhongyu;Ma, Guoli;Zhang, Wenjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4003-4006
    • /
    • 2012
  • A novel copper nanoparticles were synthesized from cupric sulfate using hydrazine as reducing reagents. A series of aromatic nitro compounds were reacted with sodium borohydride in the presence of the copper nanoparticles catalysts to afford the aromatic amino compounds in high yields. Additionally, the catalysts system can be recycled and maintain a high catalytic effect in the reduction of aromatic nitro compounds.

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

A Study on Air Temperature Reduction Effect and the Functional Improvement of Street Green Areas in Seoul, Korea (서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구)

  • Jung, Hee-Eun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2015
  • The goal of this research is to examine air temperature changes according to tree type, plantation type, roadside green area structure, and green volume of street green area within a city. The plantation type that could be analyzed for comparison by tree type with over 3 species was 1 rows of tree+shrubs. The results of analysis of average air temperature difference between pedestrian and car streets vis-a-vis 1 row of tree+shrub in high air temperature areas were: Pinus densiflora, $1.35^{\circ}C$; Zelkova serrata, $1.84^{\circ}C$; Ginkgo biloba, $2.00^{\circ}C$; Platanus occidentalis, $2.57^{\circ}C$. This standard large wide canopy species was analyzed by the roadside to provide shade to have a significant impact on air temperature reduction. In terms of analysis of the relationship between plantation type of roadside trees and air temperature, the average air temperature difference for 1 row of tree type was $1.80^{\circ}C$; for 2 rows of trees it was $2.15^{\circ}C$. In terms of analysis of the relationship between the roadside green area structure and air temperature, for tree type, average air temperature $1.94^{\circ}C$: for tree+shrub type, average air temperature $2.49^{\circ}C$; for tree+mid-size tree+shrub type, average air temperature $2.57^{\circ}C$. That is, air temperature reduction was more effective in a multi-layer structure than a single layer structure. In the relationship analysis of green volume and air temperature reduction, the air temperature reduction effect was enlarged as there was a large amount of green volume. There was a relationship with the green volume of the road, the size of the tree and number of tree layers and a multi-layer structured form of planting. The canopy volume was large and there were a great number of rows of the tree layer and the plantation type of multi-layer structure, which is what is meant through a relationship with the green volume along the roadside. Green composition standards for air temperature reduction effects and functional improvement were proposed based on the result. For a pedestrian street width of 3m or less in the field being ideal, deciduous broadleaf trees in which the canopy volume is small and the structure of the tree+shrub type through the greatest 1m green bend were proposed. For a pedestrian street width of over 3m, deciduous broadleaf trees in which the canopy volume is large and is multi-layer planted with green bend over 1m, tree+mid-size tree+shrub type was proposed.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.