Browse > Article
http://dx.doi.org/10.5714/CL.2017.21.074

A facile green reduction of graphene oxide using Annona squamosa leaf extract  

Chandu, Basavaiah (Department of Chemistry, Acharya Nagarjuna University)
Mosali, Venkata Sai Sriram (Department of Nanotechnology, Acharya Nagarjuna University)
Mullamuri, Bhanu (Department of Nanotechnology, Acharya Nagarjuna University)
Bollikolla, Hari Babu (Department of Chemistry, Acharya Nagarjuna University)
Publication Information
Carbon letters / v.21, no., 2017 , pp. 74-80 More about this Journal
Abstract
A highly facile and eco-friendly green synthesis of Annona squamosa (custard apple) leaf extract reduced graphene oxide (CRG) nanosheets was achieved by the reduction of graphene oxide (GO). The as-prepared CRG was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopic techniques. Removal of oxygen containing moieties from the GO was confirmed by UV-Vis, FT-IR and XPS spectroscopic data. The XRD and Raman data further confirmed the formation of the CRG. TEM images showed the sheet structure of the synthesized CRG. These results show that the phytochemicals present in custard apple leaf extract act as excellent reducing agents. The CRG showed good dispersion in water.
Keywords
graphene; reduced graphene oxide; Annona squamosa leaf extract; green reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu SE, Li F, Wang GW. Mechanochemistry of fullerenes and related materials. Chem Soc Rev, 42, 7535 (2013). https://doi.org/10.1039/C3CS35494F.   DOI
2 Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B, 102, 4477 (1998). https://doi.org/10.1021/jp9731821.   DOI
3 Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater, 22, 4467 (2010). https://doi.org/10.1002/adma.201000732.   DOI
4 Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem, 21, 3324 (2011). https://doi.org/10.1039/C0JM02126A.   DOI
5 Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). https://doi.org/10.1021/jp060936f.
6 McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). https://doi.org/10.1021/cm0630800.   DOI
7 Hong G, Wu QH, Ren J, Lee ST. Mechanism of non-metal catalytic growth of graphene on silicon. Appl Phys Lett, 100, 231604 (2012). https://doi.org/10.1063/1.4726114.   DOI
8 Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 3, 411 (2009). https://doi.org/10.1021/nn900020u.   DOI
9 Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 113, 4257 (2009). https://doi.org/10.1021/jp900791y.
10 Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev, 115, 10307 (2015). https://doi.org/10.1021/acs.chemrev.5b00267.   DOI
11 Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Carbocatalysis by graphene-based materials. Chem Rev, 114, 6179 (2014). https://doi.org/10.1021/cr4007347.   DOI
12 Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev, 43, 291 (2014). https://doi.org/10.1039/C3CS60303B.   DOI
13 Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4, 2429 (2010). https://doi.org/10.1021/nn1002387.   DOI
14 Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater, 19, 1987 (2009). https://doi.org/10.1002/adfm.200900167.   DOI
15 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034.   DOI
16 Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via L-ascorbic acid. Chem Commun, 46, 1112 (2010). https://doi.org/10.1039/B917705A.   DOI
17 Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 132, 7279 (2010). https://doi.org/10.1021/ja100938r.   DOI
18 Chen D, Li L, Guo L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology, 22, 325601 (2011). https://doi.org/10.1088/0957-4484/22/32/325601.   DOI
19 Wang Y, Shi Z, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces, 3, 1127 (2011). https://doi.org/10.1021/am1012613.   DOI
20 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896.   DOI
21 Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50, 914 (2012). https://doi.org/10.1016/j.carbon.2011.09.053.   DOI
22 Thakur S, Karak N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331 (2012). https://doi.org/10.1016/j.carbon.2012.07.023.   DOI
23 Esfandiar A, Akhavan O, Irajizad A. Melatonin as a powerful bioantioxidant for reduction of graphene oxide. J Mater Chem, 21, 10907 (2011). https://doi.org/10.1039/C1JM10151J.   DOI
24 Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon, 50, 1853 (2012). https://doi.org/10.1016/j.carbon.2011.12.035.   DOI
25 Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett, 160, 355 (2015). https://doi.org/10.1016/j.matlet.2015.07.144.   DOI
26 Singh C, Ali MA, Sumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chem Eng, 4, 871 (2016). https://doi.org/10.1021/acssuschemeng.5b00923.   DOI
27 Ponrasu T, Suguna L. Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int Wound J, 9, 613 (2012). https://doi.org/10.1111/j.1742-481X.2011.00924.x.   DOI
28 Pelissier Y, Marion C, Dezeuze A, Bessiere JM. Volatile components of Annona squamosa L. J Essent Oil Res, 5, 557 (1993). https://doi.org/10.1080/10412905.1993.9698278.   DOI
29 Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 26, 3484 (2014). https://doi.org/10.1002/adma.201400108.   DOI
30 Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc, 131, 15939 (2009). https://doi.org/10.1021/ja907098f.   DOI
31 Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877.   DOI
32 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.   DOI
33 Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199.   DOI
34 Berry V. Impermeability of graphene and its applications. Carbon, 62, 1 (2013). https://doi.org/10.1016/j.carbon.2013.05.052.   DOI
35 Falkovsky LA. Optical properties of graphene. J Phys Conf Ser, 129, 012004 (2008). https://doi.org/10.1088/1742-6596/129/1/012004.   DOI
36 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996.   DOI
37 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965.   DOI
38 Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev, 41, 782 (2012). https://doi.org/10.1039/C1CS15172J.   DOI
39 Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem, 47, 2405 (2012). https://doi.org/10.1016/j.procbio.2012.09.025.   DOI
40 Shanker KS, Kanjilal S, Rao BVSK, Kishore KH, Misra S, Prasad RBN. Isolation and antimicrobial evaluation of isomeric hydroxy ketones in leaf cuticular waxes of Annona squamosa. Phytochem Anal, 18, 7 (2007). https://doi.org/10.1002/pca.942.   DOI
41 Farhan H, Rammal H, Hijazi A, Hamad H, Badran B. Phytochemical screening and extraction of polyphenol from stems and leaves of a Lebanese Euphorbia macrolada schyzoceras boiss. Ann Biol Res, 3, 149 (2012).
42 Babu BH, Babu AV, Babu AS, Rambabu A. Phytochemical and antimicrobial screening of leaves of Givotia rottleriformis griff. J Pharm Res, 4, 2146 (2011).
43 Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368.   DOI
44 Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.   DOI