DOI QR코드

DOI QR Code

Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds

  • Duan, Zhongyu (Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering & Technology, Hebei University of Technology) ;
  • Ma, Guoli (Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering & Technology, Hebei University of Technology) ;
  • Zhang, Wenjun (Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering & Technology, Hebei University of Technology)
  • Received : 2012.08.02
  • Accepted : 2012.09.11
  • Published : 2012.12.20

Abstract

A novel copper nanoparticles were synthesized from cupric sulfate using hydrazine as reducing reagents. A series of aromatic nitro compounds were reacted with sodium borohydride in the presence of the copper nanoparticles catalysts to afford the aromatic amino compounds in high yields. Additionally, the catalysts system can be recycled and maintain a high catalytic effect in the reduction of aromatic nitro compounds.

Keywords

References

  1. Joseph, T.; Kumar, K. V.; Ramaswamy, A. V.; Halligudi, S. B. Catal. Commun. 2007, 8, 629. https://doi.org/10.1016/j.catcom.2006.03.004
  2. Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K. Tetrahedron Lett. 2003, 44, 7783. https://doi.org/10.1016/j.tetlet.2003.08.080
  3. Rai, G.; Jeong, J. M.; Lee, Y. S.; Kim, H. W.; Lee, D. S.; Chung, J. K.; Leea, M. C. Tetrahedron Lett. 2005, 46, 3987. https://doi.org/10.1016/j.tetlet.2005.04.035
  4. Figueras, F.; Coq, B. J. Mol. Catal. A: Chem. 2001, 173, 223. https://doi.org/10.1016/S1381-1169(01)00151-0
  5. Tan, X. Y.; Zhang, Z. X.; Xiao, Z. H.; Xu, Q.; Liang, C. H.; Wang, X. H. Catal. Lett. 2012, 142, 788. https://doi.org/10.1007/s10562-012-0821-5
  6. Zheng, Y. F.; Ma, K.; Wang, H. L.; Sun, X.; Jiang, J.; Wang, C. F.; Li, R.; Ma, J. T. Catal. Lett. 2008, 124, 268. https://doi.org/10.1007/s10562-008-9452-2
  7. Lagrost, C.; Preda, L.; Volanschi, E.; Hapiot, P. J. Electroanal. Chem. 2005, 585, 1. https://doi.org/10.1016/j.jelechem.2005.06.013
  8. Magdalene, R. M.; Leelamani, E. G.; Nanje, G. N. M. J. Mol.Catal A: Chem. 2004, 223, 17. https://doi.org/10.1016/j.molcata.2003.12.041
  9. Cardenas-Lizana, F.; Gomez-Quero, S.; Keane, M. A. Catal. Commun. 2008, 9, 475. https://doi.org/10.1016/j.catcom.2007.07.032
  10. Vilella, I. M. J.; Miguel, S. R.; Scelza, O. A. Chem. Eng. J. 2005, 114, 33. https://doi.org/10.1016/j.cej.2005.08.011
  11. Kuroda, K.; Ishida, T.; Haruta, M. J. Mol. Catal A: Chem. 2009, 298, 7. https://doi.org/10.1016/j.molcata.2008.09.009
  12. Swathi, T.; Buvaneswari, G. Materials Lett. 2008, 62, 3900. https://doi.org/10.1016/j.matlet.2008.05.028
  13. Kumar, P. S.; Rai, K. L. Chemical Papers 2012, 66, 772. https://doi.org/10.2478/s11696-012-0195-6
  14. Gowda, S.; Gowda, D. C. Tetrahedron. 2002, 58, 2211. https://doi.org/10.1016/S0040-4020(02)00093-5
  15. Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400. https://doi.org/10.1002/anie.200300594
  16. Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359. https://doi.org/10.1021/cr078346g
  17. Qiu, G. M.; Wang, C. J.; Zhang, Y. J.; Huang, S.; Liu, X. L.; Zhang, B. J.; Zhou, X. L. Bull. Korean Chem. Soc. 2012, 33, 2603. https://doi.org/10.5012/bkcs.2012.33.8.2603
  18. Lu, L.; Sui, M. L.; Lu, K. Science 2000, 287, 1463. https://doi.org/10.1126/science.287.5457.1463
  19. Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. Bull. Korean Chem. Soc. 2012, 33, 2679. https://doi.org/10.5012/bkcs.2012.33.8.2679
  20. Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134. https://doi.org/10.1021/ol101729k
  21. Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K. Tetrahedron Lett. 2003, 44, 7783. https://doi.org/10.1016/j.tetlet.2003.08.080
  22. Chaubal, N. S.; Sawant, M. R. J. Mol. Catal A: Chem. 2007, 261, 232. https://doi.org/10.1016/j.molcata.2006.06.033

Cited by

  1. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications vol.35, pp.9, 2013, https://doi.org/10.1007/s10529-013-1239-x
  2. Synthesis of Ag-SiO2 composite nanospheres and their catalytic activity vol.57, pp.6, 2014, https://doi.org/10.1007/s11426-014-5068-0
  3. Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions vol.5, pp.2, 2015, https://doi.org/10.1039/C4CY01229A
  4. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials vol.5, pp.92, 2015, https://doi.org/10.1039/C5RA11421G
  5. Creating a developed surface of copper electrolytic coatings via mechanical activation of the cathode with subsequent thermal treatment vol.79, pp.9, 2015, https://doi.org/10.3103/S1062873815090099
  6. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
  7. Greener approach for synthesis of monodispersed palladium nanoparticles using aqueous extract of green tea and their catalytic activity for the Suzuki-Miyaura coupling reaction and the reduction of nitroarenes vol.31, pp.6, 2017, https://doi.org/10.1002/aoc.3609
  8. Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature vol.40, pp.3, 2016, https://doi.org/10.1039/C5NJ02909K
  9. O–Cu–CuO nanocomposite: a catalyst with intriguing activity vol.45, pp.7, 2016, https://doi.org/10.1039/C5DT03859F
  10. /EP.EN.EG as reusable nanocatalyst for the reduction of nitro compounds vol.6, pp.23, 2016, https://doi.org/10.1039/C5RA26020E
  11. Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: high catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4239-1
  12. Synthesis of Heterocycles Catalyzed by Iron Oxide Nanoparticles vol.94, pp.4, 2017, https://doi.org/10.3987/REV-16-854
  13. Green Luminescent Copper Nanoparticles vol.149, pp.1757-899X, 2016, https://doi.org/10.1088/1757-899X/149/1/012187
  14. Synthesis, Characterization, Crystal Structure and Supramolecular Interactions of a New Ni(II) Compound Based on l-Histidine and Dipicolinic Acid; New Solid State Precursor for NiO Nanoparticles and Its Catalytic Activity for Nitrophenol Reduction pp.1574-1451, 2019, https://doi.org/10.1007/s10904-018-1022-5
  15. Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde vol.8, pp.19, 2018, https://doi.org/10.1039/C8CY01516C
  16. Efficient catalytic reduction of nitroarenes and organic dyes in water by synthesized Ag/diatomite nanocomposite using Alocasia macrorrhiza leaf extract vol.29, pp.19, 2018, https://doi.org/10.1007/s10854-018-9802-9
  17. ) magnetically recyclable nanocomposites: Synthesis, characterization and enhanced catalytic performance for the reduction of nitrophenols and nitroanilines pp.02682605, 2018, https://doi.org/10.1002/aoc.4518
  18. Highly active copper catalyst obtained through rapid MOF decomposition vol.6, pp.2, 2019, https://doi.org/10.1039/C8QI01217B
  19. Synergistic effect of bimetallic Cu:Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol vol.43, pp.7, 2019, https://doi.org/10.1039/C8NJ05649H
  20. Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles vol.4, pp.95, 2014, https://doi.org/10.1039/c4ra10397a
  21. Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles vol.4, pp.95, 2014, https://doi.org/10.1039/c4ra10397a
  22. Ultrafine Copper Nanoparticles Exhibiting a Powerful Antifungal/Killing Activity Against Corticium Salmonicolor vol.35, pp.9, 2012, https://doi.org/10.5012/bkcs.2014.35.9.2645
  23. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? vol.1, pp.1, 2012, https://doi.org/10.1007/s41204-016-0004-5
  24. The Influential Factors on Antibacterial Behaviour of Copper and Silver Nanoparticles vol.58, pp.3, 2016, https://doi.org/10.1080/00194506.2015.1026950
  25. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nit vol.465, pp.None, 2016, https://doi.org/10.1016/j.jcis.2015.11.060
  26. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes vol.466, pp.None, 2012, https://doi.org/10.1016/j.jcis.2015.12.036
  27. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes vol.490, pp.None, 2012, https://doi.org/10.1016/j.jcis.2016.11.032
  28. Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction vol.48, pp.3, 2012, https://doi.org/10.1080/24701556.2018.1503676
  29. Flower-like 3-dimensional hierarchical Co3O4/NiO microspheres for 4-nitrophenol reduction reaction vol.1, pp.1, 2012, https://doi.org/10.1039/c8na00029h
  30. Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants vol.30, pp.4, 2012, https://doi.org/10.1007/s10854-019-00668-8
  31. Phytosynthesis of Cu/rGO using Euphorbia cheiradenia Boiss extract and study of its ability in the reduction of organic dyes and 4‐nitrophenol in aqueous medium vol.13, pp.2, 2012, https://doi.org/10.1049/iet-nbt.2018.5175
  32. Nano NiO/AlMCM‐41, a green synergistic, highly efficient and recyclable catalyst for the reduction of nitrophenols vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4864
  33. Characterization and application of Cu based superhydrophobic catalyst vol.29, pp.4, 2019, https://doi.org/10.1016/j.pnsc.2019.08.002
  34. Salep as a biological source for the synthesis of biochar with utility for the catalysis vol.33, pp.8, 2012, https://doi.org/10.1002/aoc.4990
  35. Combination of polymer and halloysite chemistry for development of a novel catalytic hybrid system vol.45, pp.9, 2012, https://doi.org/10.1007/s11164-019-03835-y
  36. Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction vol.9, pp.9, 2012, https://doi.org/10.3390/catal9090737
  37. Michael Addition Reaction Catalyzed by Imidazolium Chloride to Protect Amino Groups and Construct Medium Ring Heterocycles vol.24, pp.23, 2012, https://doi.org/10.3390/molecules24234224
  38. Catalytic Efficiency of Biosynthesized Silver Nanoparticles in Synthesis of Chromones and Reduction of Nitro Aromatics vol.4, pp.48, 2012, https://doi.org/10.1002/slct.201903001
  39. Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0008
  40. Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0008
  41. Glycerol: An Optimal Hydrogen Source for Microwave-Promoted Cu-Catalyzed Transfer Hydrogenation of Nitrobenzene to Aniline vol.8, pp.None, 2012, https://doi.org/10.3389/fchem.2020.00034
  42. Synthesis and characterization of a novel TEMPO@FeNi3/DFNS-laccase magnetic nanocomposite for the reduction of nitro compounds vol.10, pp.46, 2012, https://doi.org/10.1039/d0ra03989f
  43. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III) vol.10, pp.8, 2012, https://doi.org/10.3390/nano10081552
  44. Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts vol.8, pp.30, 2012, https://doi.org/10.1039/d0ta04765a
  45. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity vol.11, pp.4, 2012, https://doi.org/10.3390/biom11040564
  46. Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans‐3‐(trans‐4‐imidazolyl vol.35, pp.6, 2012, https://doi.org/10.1002/aoc.6229
  47. Copper metallic nanoparticles capped with PEGylated PAMAM-G3 dendrimers for the catalytic reduction of low solubility nitroarenes of pharmaceutical interest vol.372, pp.None, 2012, https://doi.org/10.1016/j.cattod.2020.11.011
  48. Highly porous copper-supported magnetic nanocatalysts: made of volcanic pumice textured by cellulose and applied for the reduction of nitrobenzene derivatives vol.11, pp.41, 2012, https://doi.org/10.1039/d1ra03538j
  49. Catalytic performance of copper(II) Schiff base complex immobilized on Fe3O4 nanoparticles in synthesis of 2-amino-4H-benzo[h] chromenes and reduction of 4-nitrophenol vol.1253, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2021.132102