DOI QR코드

DOI QR Code

A facile green reduction of graphene oxide using Annona squamosa leaf extract

  • Received : 2016.11.01
  • Accepted : 2016.12.19
  • Published : 2017.01.31

Abstract

A highly facile and eco-friendly green synthesis of Annona squamosa (custard apple) leaf extract reduced graphene oxide (CRG) nanosheets was achieved by the reduction of graphene oxide (GO). The as-prepared CRG was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopic techniques. Removal of oxygen containing moieties from the GO was confirmed by UV-Vis, FT-IR and XPS spectroscopic data. The XRD and Raman data further confirmed the formation of the CRG. TEM images showed the sheet structure of the synthesized CRG. These results show that the phytochemicals present in custard apple leaf extract act as excellent reducing agents. The CRG showed good dispersion in water.

Keywords

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896.
  2. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc, 131, 15939 (2009). https://doi.org/10.1021/ja907098f.
  3. Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 26, 3484 (2014). https://doi.org/10.1002/adma.201400108.
  4. Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877.
  5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.
  6. Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199.
  7. Falkovsky LA. Optical properties of graphene. J Phys Conf Ser, 129, 012004 (2008). https://doi.org/10.1088/1742-6596/129/1/012004.
  8. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996.
  9. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965.
  10. Berry V. Impermeability of graphene and its applications. Carbon, 62, 1 (2013). https://doi.org/10.1016/j.carbon.2013.05.052.
  11. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev, 41, 782 (2012). https://doi.org/10.1039/C1CS15172J.
  12. Zhu SE, Li F, Wang GW. Mechanochemistry of fullerenes and related materials. Chem Soc Rev, 42, 7535 (2013). https://doi.org/10.1039/C3CS35494F.
  13. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B, 102, 4477 (1998). https://doi.org/10.1021/jp9731821.
  14. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater, 22, 4467 (2010). https://doi.org/10.1002/adma.201000732.
  15. Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem, 21, 3324 (2011). https://doi.org/10.1039/C0JM02126A.
  16. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 110, 8535 (2006). https://doi.org/10.1021/jp060936f.
  17. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). https://doi.org/10.1021/cm0630800.
  18. Hong G, Wu QH, Ren J, Lee ST. Mechanism of non-metal catalytic growth of graphene on silicon. Appl Phys Lett, 100, 231604 (2012). https://doi.org/10.1063/1.4726114.
  19. Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 3, 411 (2009). https://doi.org/10.1021/nn900020u.
  20. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 113, 4257 (2009). https://doi.org/10.1021/jp900791y.
  21. Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev, 115, 10307 (2015). https://doi.org/10.1021/acs.chemrev.5b00267.
  22. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Carbocatalysis by graphene-based materials. Chem Rev, 114, 6179 (2014). https://doi.org/10.1021/cr4007347.
  23. Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev, 43, 291 (2014). https://doi.org/10.1039/C3CS60303B.
  24. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater, 19, 1987 (2009). https://doi.org/10.1002/adfm.200900167.
  25. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034.
  26. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via L-ascorbic acid. Chem Commun, 46, 1112 (2010). https://doi.org/10.1039/B917705A.
  27. Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4, 2429 (2010). https://doi.org/10.1021/nn1002387.
  28. Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc, 132, 7279 (2010). https://doi.org/10.1021/ja100938r.
  29. Chen D, Li L, Guo L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology, 22, 325601 (2011). https://doi.org/10.1088/0957-4484/22/32/325601.
  30. Wang Y, Shi Z, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces, 3, 1127 (2011). https://doi.org/10.1021/am1012613.
  31. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50, 914 (2012). https://doi.org/10.1016/j.carbon.2011.09.053.
  32. Thakur S, Karak N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331 (2012). https://doi.org/10.1016/j.carbon.2012.07.023.
  33. Esfandiar A, Akhavan O, Irajizad A. Melatonin as a powerful bioantioxidant for reduction of graphene oxide. J Mater Chem, 21, 10907 (2011). https://doi.org/10.1039/C1JM10151J.
  34. Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon, 50, 1853 (2012). https://doi.org/10.1016/j.carbon.2011.12.035.
  35. Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett, 160, 355 (2015). https://doi.org/10.1016/j.matlet.2015.07.144.
  36. Singh C, Ali MA, Sumana G. Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chem Eng, 4, 871 (2016). https://doi.org/10.1021/acssuschemeng.5b00923.
  37. Ponrasu T, Suguna L. Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int Wound J, 9, 613 (2012). https://doi.org/10.1111/j.1742-481X.2011.00924.x.
  38. Pelissier Y, Marion C, Dezeuze A, Bessiere JM. Volatile components of Annona squamosa L. J Essent Oil Res, 5, 557 (1993). https://doi.org/10.1080/10412905.1993.9698278.
  39. Shanker KS, Kanjilal S, Rao BVSK, Kishore KH, Misra S, Prasad RBN. Isolation and antimicrobial evaluation of isomeric hydroxy ketones in leaf cuticular waxes of Annona squamosa. Phytochem Anal, 18, 7 (2007). https://doi.org/10.1002/pca.942.
  40. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem, 47, 2405 (2012). https://doi.org/10.1016/j.procbio.2012.09.025.
  41. Farhan H, Rammal H, Hijazi A, Hamad H, Badran B. Phytochemical screening and extraction of polyphenol from stems and leaves of a Lebanese Euphorbia macrolada schyzoceras boiss. Ann Biol Res, 3, 149 (2012).
  42. Babu BH, Babu AV, Babu AS, Rambabu A. Phytochemical and antimicrobial screening of leaves of Givotia rottleriformis griff. J Pharm Res, 4, 2146 (2011).
  43. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368.
  44. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.

Cited by

  1. L. leaf extract as an alternative renewable bio-resource pp.1369-9261, 2018, https://doi.org/10.1039/C8NJ04086A