• 제목/요약/키워드: glucose oxidase (GOx)

검색결과 38건 처리시간 0.022초

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials

  • Kim, Soo-Yeoun;Jo, Hyeon-Jin;Choi, Seong-Ho
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.269-278
    • /
    • 2019
  • We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구 (A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker)

  • 정용진;권용재
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.802-807
    • /
    • 2015
  • 본 논문에서는 글루코스산화제, polyethyleneimine(PEI) 및 탄소나노튜브 간 물리적 흡착으로 제조된 촉매(GOx/PEI/CNT)에 새로운 가교제인 terephthalaldehyde(TPA)를 첨가하여 민감도 및 안정성이 개선된 글루코스 센서 촉매를 합성하여, 감지능 및 안정성 개선효과를 확인하였다. 새로운 가교제를 포함한 바이오 촉매는, 글루코스산화제 및 polyethyeleneimine의 관능기와 TPA의 관능기간 알돌축합반응에 의해 생성되었고, 이를 통해 생성된 새로운 전자전달구조는 글루코스의 산화반응을 촉진시켰다. 이러한 촉매활성은 전기화학적 평가를 통해 정량적으로 평가하였으며 그 결과 $41.1{\mu}Acm^{-2}mM^{-1}$의 글루코스 민감도를 얻을 수 있었다. 또한 가교제와 글루코스산화제 및 polyethyeleneimine 간의 화학반응의 형성에 의해 글루코스 산화제의 외부 손실을 최소화 하여, 센서 안정성 향상에도 크게 기여하였다. 안정성 평가를 한 결과, 3주간의 주기적인 촉매 활성 측정후에 94.6% 활성이 유지됨을 확인하였다.

Glucose Oxidase/glucose Induces Apoptosis in C6 Glial Cells via Mitochondria-dependent Pathway

  • PARK Min Kyu;KIM Woo Sang;LEE Young Soo;KANG Young Jin;CHONG Won Seog;KIM Hye Jung;SEO Han Geuk;LEE Jae Heun;CHANG Ki Churl
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.207-213
    • /
    • 2005
  • It has been proposed that reactive oxygen species (ROS), mainly superoxide anion ($O_2^-$) and hydrogen peroxide ($H_2O_2$), may mediate oxidative stress. Production of $H_2O_2$ during oxidative phosphorylation, inflammation, and ischemia can cause oxidative stress leading to cell death. Although glucose oxidase (GOX) in the presence of glucose continuously generates $H_2O_2$, it is not clear whether GOX produces apoptotic cell death in C6 glial cells. Thus, we investigated the mechanism by which GOX induces cell death. Cells were incubated with different concentration of GOX in the presence of glucose where cell viability, TUNEL and DNA ladder were analyzed. Results indicated that GOX exhibited cytotoxicity in a dose dependent manner by MTT assay. TUNEL positive cell and DNA laddering showed that GOX-induced cytotoxicity was due to apoptosis. Western blot analysis also showed that the cleaved caspase-3 level was detected in the GOX-treated cells at 10 mU/ml and increased dramatically at 30 mU/ml. Cleaved PARP also appeared at 10 mU/ml and lasted at 20 or 30 mU/ml of GOX. Cytochrome c level was increased by GOX dose dependently, which was contrast to Bcl-2 expression level. These results suggest that GOX induces apoptosis through caspase-3 activation, which followed by cytochrome c release from mitochondria through regulating of Bcl-2 level.

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구 (A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod)

  • 정용진;현규환;한상원;민지홍;천승규;고원건;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

소형화된 glucose 센서 제작 및 전기 화학적 특성 분석 (Development of miniaturized glucose sensor based on glucose oxidase immobilized on polypyrrole-ferricyanide films on platinum electrodes)

  • 윤동화;양정훈;진준형;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.248-250
    • /
    • 2002
  • 본 논문은 당뇨병의 지표물질인 glucose의 농도를 극미량의 시료를 사용하여 정량 할 수 있는 방법을 개발하기 위하여 효소 고정화 전극을 제작하였다. 전극은 실리콘 웨이퍼상에 마이크로 크기의 전극을 반도체 공정을 이용하여 제작하였고, 전기 화학적 방법으로 마이크로 전극에 전도성 고분자 Polypyrrole(PPy) 및 glucose oxidase(GOx)를 고정화한 고감도의 전기화학 전극을 개발하였다. 도전성 고분자의 전기 화학적 중합은 순환 전압 전류법으로 하였으며, 용액의 액성에 따른 효소의 표면 전하를 이용하여, 도전성 고분자를 코팅한 전극에 일정한 전압을 인가하고 GOx를 도우핑 하였다. 제작된 전극은 시간대 전류법으로 glucose의 농도에 따른 감도 측정결과 마이크로 리터의 시료에 $5{\mu}A$/decade를 얻었다. 전극의 표면분석은 Scanning electron microscopy(SEM), Energy dispersive X-ray spectroscopy(EDX)를 이용하였다.

  • PDF

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • 한국축산식품학회지
    • /
    • 제39권1호
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.

Tetraethoxysilane의 졸-겔 반응을 이용한 전기화학적 glucose biosenor 개발 (Development of Glucose Biosensor Using Sol-Gel Reaction of Tetraethoxysilane)

  • 장승철;박덕수
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.311-317
    • /
    • 2012
  • Disposable amperometric screen-printed biosensor strips have been fabricated by a sol-gel encapsulation for the analysis of glucose. The glucose oxidase(GOx) is entrapped in the gel matrix through sol-gel transition of tetraethoxysliane(TEOS). The biosensor is fabricated by GOx containing thin film of TEOS gel on the surface of screen-printed carbon electrode(SPCE). The GOx-containing thin film of TEOS gel offers a one-step modification process on the surface of SPCE. The optimum conditions for glucose determination have been characterized with respect to the applied potential, enzyme loading ratio, and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 16.0 mM and 0.25 mM, respectively.