Browse > Article
http://dx.doi.org/10.12925/jkocs.2019.36.1.269

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials  

Kim, Soo-Yeoun (Department of Health Cosmetic Science, Dongduk Women's University)
Jo, Hyeon-Jin (Department of Chemistry, Hannam University)
Choi, Seong-Ho (Department of Chemistry, Hannam University)
Publication Information
Journal of the Korean Applied Science and Technology / v.36, no.1, 2019 , pp. 269-278 More about this Journal
Abstract
We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.
Keywords
Immobilization of glucose oxidase; Electrochemical polymerization; 3-thiophenecarboxylic acid:thiophene; Electron transfer; Human blood sample;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. D. Doucette, J. Salas, J. Wang, J. F. Scherrer, "Insurance coverage and diabetes quality indicators among patients with diabetes in the US general population", Primary Care Diabetes, Vol. 11, No. 6, pp. 515-521, (2017).   DOI
2 R. Manoharan, Y. Wang, M. S. Feld, "Histochemical analysis of biological tissues using Raman spectroscopy", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 52, N. 2, pp. 215-249, (1996).   DOI
3 G. P. Parpinello, A. Versari, "A simple high-performance liquid chromatography method for the analysis of glucose, glycerol, and methanol in a bioprocess", Journal of chromatographic science,Vol. 38, pp. 259-261, (2000).   DOI
4 D. C. Klonoff, "Overview of fluorescence glucose sensing: a technology with a bright future", Journal of diabetes science and technology, Vol. 6, pp. 1242-1250, (2012).   DOI
5 Y. Li, Y. Shen, "Polythiophene-based materials for nonvolatile polymeric memory devices', Polymer Engineering & Science, Vol. 54, pp. 2470-2488, (2014).   DOI
6 P. Liu, Y. Wu, H. Pan, B.S. Ong, S. Zhu, "High-Performance Polythiophene Thin-Film Transistors Processed with Environmentally Benign Solvent", Macromolecules, Vol. 43, pp. 6368-6373, (2010).   DOI
7 H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay, Y. Lin, "Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film" Talanta, Vol. 80, pp. 403-406, (2009).   DOI
8 Z. Zeng, X. Zhou, X. Huang, Z. Wang, Y. Yang, Q. Zhang, F. Boey, H. Zhang, " Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection", Analyst, Vol. 135, pp. 1726-1730, (2010).   DOI
9 H. Li, J. He, Y. Zhao, D. Wu, Y. Cai, Q. Wei, M. Yang, "Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor", Electrochimica Acta, Vol. 56, pp. 2960-2965, (2011).   DOI
10 X. Han, Y. Zhu, X. Yang, J. Zhang, C. Li, "Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection" Journal of Solid State Electrochemistry, Vol. 15, pp. 511-517, (2011).   DOI
11 X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, "Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite" Sensors and Actuators B: Chemical, Vol. 153, pp. 158-163, (2011).   DOI
12 P. S. Sharma, A. Pietrzyk-Le, F. D'Souza, W. Kutner, "Electrochemically synthesized polymers in molecular imprinting for chemical sensing",Analytical and bioanalytical chemistry, Vol. 402, pp. 3177-3204, (2012).   DOI
13 E.-Y. Jung, J.-H. Ye, S.-H. Jung, S.-H. Choi, "Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose" Journal of Nanomaterials, Vol. 2016, pp. 9-14, (2016).
14 S. Ferri, K. Kojima, K. Sode, "Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes", Journal of diabetes science and technology,Vol. 5, pp. 1068-1076, (2011).   DOI
15 P. De Taxis Du Poet, S. Miyamoto, T. Murakami, J. Kimura, I. Karube, "Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly (N-methylpyrrole) film on a gold microelectrode", Analytica Chimica Acta, Vol. 235, pp. 255-263, (1990).   DOI
16 J. M. Robbins, M. G. Souffrant, D. Hamelberg, G. Gadda, A. S. Bommarius, "Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties" Biochemistry, Vol. 56, pp. 3800-3807, (2017).   DOI
17 Y. Yin, Y. Lu, P. Wu, C. Cai, "Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes", Sensors, Vol. 5, pp. 220-234,(2005).   DOI
18 A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, "Polythiophene-based supercapacitors", Journal of Power Sources, Vol. 80, pp. 142-148, (1999).   DOI
19 M.G. Vivas, S.L. Nogueira, H.S. Silva, N.M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R.A. Silva, " Linear and Nonlinear Optical Properties of the Thiophene/Phenylene-Based Oligomer and Polymer"The Journal of Physical Chemistry B, Vol. 115, pp. 12687-12693,(2011).   DOI
20 J. Pei, W.-L. Yu, W. Huang, A.J. Heeger, "A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer Light-Emitting Diodes", Macromolecules, Vol. 33, pp. 2462-2471, (2000).   DOI
21 M.E. Nicho, H. Hu, C. Lopez-Mata, J. Escalante, "Synthesis of derivatives of polythiophene and their application in an electrochromic device", Solar Energy Materials and Solar Cells, Vol. 82, pp. 105-118, (2004).   DOI
22 X. Hu, J.A. Lawrence, J. Mullahoo, Z.C. Smith, D.J. Wilson, C.R. Mace, S.W. Thomas, "Directly Photopatternable Polythiophene as Dual-Tone Photoresist", Macromolecules, Vol. 50, pp. 7258-7267, (2017).   DOI
23 F. Jonas, L. Schrader, "Conductive modifications of polymers with polypyrroles and polythiophenes", Synthetic Metals, Vol. 41, pp. 831-836, (1991).   DOI
24 C. Li, G. Shi, "Polythiophene-Based Optical Sensors for Small Molecules", ACS Applied Materials & Interfaces, Vol. 5, pp. 4503-4510, (2013).   DOI
25 B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, "Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium-Sulfur Batteries",Chemistry of Materials, Vol. 27, pp. 7011-7017, (2015).   DOI
26 M.A. Dar, K. Majid, M. Hanief Najar, R.K. Kotnala, J. Shah, S.K. Dhawan, M. Farukh, "Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications", Physical Chemistry Chemical Physics, Vol. 19, pp. 10629-10643, (2017).   DOI
27 F. Pierini, M. Lanzi, P. Nakielski, S. Pawlowska, O. Urbanek, K. Zembrzycki, T.A. Kowalewski, 'Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers", Macromolecules, Vol. 50, pp. 4972-4981, (2017).   DOI